Skip to main content

Graph SLAM solver in Python

Project description

https://github.com/JeffLIrion/python-graphslam/actions/workflows/python-package.yml/badge.svg?branch=master https://coveralls.io/repos/github/JeffLIrion/python-graphslam/badge.svg?branch=master

Documentation for this package can be found at https://python-graphslam.readthedocs.io/.

This package implements a Graph SLAM solver in Python.

Features

  • Optimize R^2, R^3, SE(2), and SE(3) datasets

  • Analytic Jacobians

  • Supports odometry and landmark edges

  • Supports custom edge types (see tests/test_custom_edge.py for an example)

  • Import and export .g2o files

Installation

pip install graphslam

Example Usage

SE(3) Dataset

>>> from graphslam.graph import Graph

>>> g = Graph.from_g2o("data/parking-garage.g2o")  # https://lucacarlone.mit.edu/datasets/

>>> g.plot(vertex_markersize=1)

>>> g.calc_chi2()

16720.02100546733

>>> g.optimize()

>>> g.plot(vertex_markersize=1)

Output:

Iteration                chi^2        rel. change
---------                -----        -----------
        0           16720.0210
        1              45.6644          -0.997269
        2               1.2936          -0.971671
        3               1.2387          -0.042457
        4               1.2387          -0.000001

Original

Optimized

https://raw.githubusercontent.com/JeffLIrion/python-graphslam/master/docs/source/images/parking-garage.png https://raw.githubusercontent.com/JeffLIrion/python-graphslam/master/docs/source/images/parking-garage-optimized.png

SE(2) Dataset

>>> from graphslam.graph import Graph

>>> g = Graph.from_g2o("data/input_INTEL.g2o")  # https://lucacarlone.mit.edu/datasets/

>>> g.plot()

>>> g.calc_chi2()

7191686.382493544

>>> g.optimize()

>>> g.plot()

Output:

Iteration                chi^2        rel. change
---------                -----        -----------
        0         7191686.3825
        1       319950425.6477          43.488929
        2       124950341.8035          -0.609470
        3          338165.0770          -0.997294
        4             734.7343          -0.997827
        5             215.8405          -0.706233
        6             215.8405          -0.000000

Original

Optimized

https://raw.githubusercontent.com/JeffLIrion/python-graphslam/master/docs/source/images/input_INTEL.png https://raw.githubusercontent.com/JeffLIrion/python-graphslam/master/docs/source/images/input_INTEL-optimized.png

References and Acknowledgments

  1. Grisetti, G., Kummerle, R., Stachniss, C. and Burgard, W., 2010. A tutorial on graph-based SLAM. IEEE Intelligent Transportation Systems Magazine, 2(4), pp.31-43.

  2. Blanco, J.L., 2010. A tutorial on SE(3) transformation parameterizations and on-manifold optimization. University of Malaga, Tech. Rep, 3.

  3. Carlone, L., Tron, R., Daniilidis, K. and Dellaert, F., 2015, May. Initialization techniques for 3D SLAM: a survey on rotation estimation and its use in pose graph optimization. In 2015 IEEE international conference on robotics and automation (ICRA) (pp. 4597-4604). IEEE.

  4. Carlone, L. and Censi, A., 2014. From angular manifolds to the integer lattice: Guaranteed orientation estimation with application to pose graph optimization. IEEE Transactions on Robotics, 30(2), pp.475-492.

Thanks to Luca Larlone for allowing inclusion of the Intel and parking garage datasets in this repo.

Live Coding Graph SLAM in Python

If you’re interested, you can watch as I coded this up.

  1. Live coding Graph SLAM in Python (Part 1)

  2. Live coding Graph SLAM in Python (Part 2)

  3. Live coding Graph SLAM in Python (Part 3)

  4. Live coding Graph SLAM in Python (Part 4)

  5. Live coding Graph SLAM in Python (Part 5)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

graphslam-0.0.17.tar.gz (35.5 kB view details)

Uploaded Source

File details

Details for the file graphslam-0.0.17.tar.gz.

File metadata

  • Download URL: graphslam-0.0.17.tar.gz
  • Upload date:
  • Size: 35.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for graphslam-0.0.17.tar.gz
Algorithm Hash digest
SHA256 482770a1e6aea732bbc5944d83a65e1ed74c458e29fc40b69f33178a3a87b574
MD5 25c64b482927fb1354fc01a53e11975a
BLAKE2b-256 191204ff8145ef171b81fec9042f156e903a14656f290778d0433f14c7842d07

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page