Skip to main content

Literal Enum

Project description

grd

Developer Guide

Setup

# create conda environment
$ mamba env create -f env.yml

# update conda environment
$ mamba env update -n grd --file env.yml

Install

pip install -e .

# install from pypi
pip install grd

nbdev

# activate conda environment
$ conda activate grd

# make sure the grd package is installed in development mode
$ pip install -e .

# make changes under nbs/ directory
# ...

# compile to have changes apply to the grd package
$ nbdev_prepare

Publishing

# publish to pypi
$ nbdev_pypi

# publish to conda
$ nbdev_conda --build_args '-c conda-forge'
$ nbdev_conda --mambabuild --build_args '-c conda-forge -c dsm-72'

Usage

Installation

Install latest from the GitHub repository:

$ pip install git+https://github.com/dsm-72/grd.git

or from conda

$ conda install -c dsm-72 grd

or from pypi

$ pip install grd

Documentation

Documentation can be found hosted on GitHub repository pages. Additionally you can find package manager specific guidelines on conda and pypi respectively.

abc, d = Literal['a', 'b', 'c'], 'd'
class ABC_Guard(TTypeGuard):
    types = abc

ABC_Guard.istype('bz'), ABC_Guard.istype('b')
(False, True)
class ABCD_Guard(TTypeGuard):
    types = Union[abc, d]
    
ABCD_Guard.istype('b'), ABCD_Guard.istype('d')
(True, True)
import numpy as np
from typing import TypeAlias
ndarray: TypeAlias = np.ndarray

class NPArrayGuard(TTypeGuard):
    types = ndarray

NPArrayGuard.istype([1,2,3]), NPArrayGuard.istype(np.array([1,2,3]))
(False, True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

grd-0.0.1.tar.gz (10.2 kB view details)

Uploaded Source

Built Distribution

grd-0.0.1-py3-none-any.whl (9.9 kB view details)

Uploaded Python 3

File details

Details for the file grd-0.0.1.tar.gz.

File metadata

  • Download URL: grd-0.0.1.tar.gz
  • Upload date:
  • Size: 10.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for grd-0.0.1.tar.gz
Algorithm Hash digest
SHA256 7c3f94be98edef22b9aa1c51fd5acac946682d6d7fec78808bf537246230d58f
MD5 5125c24b7496cb19522ff9f23776698a
BLAKE2b-256 d66853d6dcfa2c7483d3e1c23234963ce2ad2905227145670adcdefc82d58e4c

See more details on using hashes here.

File details

Details for the file grd-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: grd-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 9.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for grd-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6a078c50e7d86d343d1aa019153fb8ab063f4a7e1320681ad94eeffedd2fcdaf
MD5 be3a917702d43d8e439a6fa5267cd82e
BLAKE2b-256 1bc9302f3bb89a36744d1cad2ed3914227a23c08b8e33c8fecab18e298cdb296

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page