Skip to main content

Inspired by the library great-expectations

Project description

Great Assertions

serialbandicoot flake8 Lint codecov CodeQL

This library is inspired by the Great Expectations library. The library has made the various expectations found in Great Expectations available when using the inbuilt python unittest assertions.

For example if you wanted to use expect_column_values_to_be_between then you can access assertExpectColumnValuesToBeBetween.

Install

pip install great-assertions

Code example Pandas

from great_assertions import GreatAssertions
import pandas as pd

class GreatAssertionTests(GreatAssertions):
    def test_expect_table_row_count_to_equal(self):
        df = pd.DataFrame({"col_1": [100, 200, 300], "col_2": [10, 20, 30]})
        self.assertExpectTableRowCountToEqual(df, 3)

Code example PySpark

from great_assertions import GreatAssertions
from pyspark.sql import SparkSession

class GreatAssertionTests(GreatAssertions):

    def setUp(self):
        self.spark = SparkSession.builder.getOrCreate()

    def test_expect_table_row_count_to_equal(self):
        df = self.spark.createDataFrame(
            [
                {"col_1": 100, "col_2": 10},
                {"col_1": 200, "col_2": 20},
                {"col_1": 300, "col_2": 30},
            ]
        )
        self.assertExpectTableRowCountToEqual(df, 3)

List of available assertions

Pandas PySpark
assertExpectTableRowCountToEqual :white_check_mark: :white_check_mark:
assertExpectColumnValuesToBeBetween :white_check_mark: :white_check_mark:
assertExpectColumnValuesToMatchRegex :white_check_mark: :white_check_mark:
assertExpectColumnValuesToBeInSet :white_check_mark: :white_check_mark:
assertExpectColumnValuesToBeOfType :white_check_mark: :white_check_mark:
assertExpectTableColumnsToMatchOrderedList :white_check_mark: :white_check_mark:
assertExpectTableColumnsToMatchSet :white_check_mark: :white_check_mark:
assertExpectDateRangeToBeMoreThan :white_check_mark: :white_check_mark:
assertExpectDateRangeToBeLessThan :white_check_mark: :white_check_mark:
assertExpectDateRangeToBeBetween :white_check_mark: :white_check_mark:
assertExpectColumnMeanToBeBetween :white_check_mark: :white_check_mark:
assertExpectColumnValueCountsPercentToBeBetween :white_check_mark: :white_check_mark:

Assertion Descriptions

For a description of the assertions see Assertion Definitions

Running the tests

Executing the tests still require unittest, the following options have been tested with the examples provided.

Option 1

import unittest
suite = unittest.TestLoader().loadTestsFromTestCase(GreatAssertionTests)
runner = unittest.TextTestRunner(verbosity=2)
runner.run(suite) 

Options 2

if __name__ == '__main__':
    unittest.main()   

Notes

If you get an arrows function warning when running in Databricks, this will happen becuase a toPandas() method is called. The plan is to remove pandas conversion for Spark at a later date as use native PySpark code. For make sure the datasets are not too big, to cause the driver to crash.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

great-assertions-0.0.23.tar.gz (20.0 kB view details)

Uploaded Source

Built Distribution

great_assertions-0.0.23-py3-none-any.whl (10.1 kB view details)

Uploaded Python 3

File details

Details for the file great-assertions-0.0.23.tar.gz.

File metadata

  • Download URL: great-assertions-0.0.23.tar.gz
  • Upload date:
  • Size: 20.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for great-assertions-0.0.23.tar.gz
Algorithm Hash digest
SHA256 43fe723c54a21b61ab97c64845fae318fdad3b73a2b743941b751a07869cc509
MD5 c85841b7ba01f05cee016fa97b591a73
BLAKE2b-256 2399ae079f98b021ccfa236df2933846f2e8eaa0ad117e88d8eb331df237a5f6

See more details on using hashes here.

File details

Details for the file great_assertions-0.0.23-py3-none-any.whl.

File metadata

  • Download URL: great_assertions-0.0.23-py3-none-any.whl
  • Upload date:
  • Size: 10.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for great_assertions-0.0.23-py3-none-any.whl
Algorithm Hash digest
SHA256 a53d1b27736090a28c5c0fb4e6b356aab2455152ed42cad52675327642451f40
MD5 5a373434971e8351f574fd7c876d0efd
BLAKE2b-256 659fe3de5256181ecdcbbafbd4de94751544ae8580bf33d38e3eca23bebe0644

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page