Skip to main content

Inspired by the library great-expectations

Project description

Great Assertions

serialbandicoot flake8 Lint codecov CodeQL

This library is inspired by the Great Expectations library. The library has made the various expectations found in Great Expectations available when using the inbuilt python unittest assertions.

For example if you wanted to use expect_column_values_to_be_between then you can access assertExpectColumnValuesToBeBetween.

Install

pip install great-assertions

Code example Pandas

from great_assertions import GreatAssertions
import pandas as pd

class GreatAssertionTests(GreatAssertions):
    def test_expect_table_row_count_to_equal(self):
        df = pd.DataFrame({"col_1": [100, 200, 300], "col_2": [10, 20, 30]})
        self.assertExpectTableRowCountToEqual(df, 3)

Code example PySpark

from great_assertions import GreatAssertions
from pyspark.sql import SparkSession

class GreatAssertionTests(GreatAssertions):

    def setUp(self):
        self.spark = SparkSession.builder.getOrCreate()

    def test_expect_table_row_count_to_equal(self):
        df = self.spark.createDataFrame(
            [
                {"col_1": 100, "col_2": 10},
                {"col_1": 200, "col_2": 20},
                {"col_1": 300, "col_2": 30},
            ]
        )
        self.assertExpectTableRowCountToEqual(df, 3)

List of available assertions

Pandas PySpark
assertExpectTableRowCountToEqual :white_check_mark: :white_check_mark:
assertExpectColumnValuesToBeBetween :white_check_mark: :white_check_mark:
assertExpectColumnValuesToMatchRegex :white_check_mark: :white_check_mark:
assertExpectColumnValuesToBeInSet :white_check_mark: :white_check_mark:
assertExpectColumnValuesToBeOfType :white_check_mark: :white_check_mark:
assertExpectTableColumnsToMatchOrderedList :white_check_mark: :white_check_mark:
assertExpectTableColumnsToMatchSet :white_check_mark: :white_check_mark:
assertExpectDateRangeToBeMoreThan :white_check_mark: :white_check_mark:
assertExpectDateRangeToBeLessThan :white_check_mark: :white_check_mark:
assertExpectDateRangeToBeBetween :white_check_mark: :white_check_mark:
assertExpectColumnMeanToBeBetween :white_check_mark: :white_check_mark:
assertExpectColumnValueCountsPercentToBeBetween :white_check_mark: :white_check_mark:

Assertion Descriptions

For a description of the assertions see Assertion Definitions

Running the tests

Executing the tests still require unittest, the following options have been tested with the examples provided.

Option 1

import unittest
suite = unittest.TestLoader().loadTestsFromTestCase(GreatAssertionTests)
runner = unittest.TextTestRunner(verbosity=2)
runner.run(suite) 

Options 2

if __name__ == '__main__':
    unittest.main()   

Notes

If you get an arrows function warning when running in Databricks, this will happen becuase a toPandas() method is called. The plan is to remove pandas conversion for Spark at a later date as use native PySpark code. For make sure the datasets are not too big, to cause the driver to crash.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

great-assertions-0.0.27.tar.gz (18.8 kB view details)

Uploaded Source

Built Distribution

great_assertions-0.0.27-py3-none-any.whl (14.8 kB view details)

Uploaded Python 3

File details

Details for the file great-assertions-0.0.27.tar.gz.

File metadata

  • Download URL: great-assertions-0.0.27.tar.gz
  • Upload date:
  • Size: 18.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for great-assertions-0.0.27.tar.gz
Algorithm Hash digest
SHA256 a41b5b6d00e468c5fcc96ad6111f6c41608a1f0a6acf94c018ab5c5243d441e7
MD5 02381a28b12bfeb0f622d8f366718d93
BLAKE2b-256 aa2651a883bd6c246acce71bd80cb355825f7714b484df56601b37a96bc7cd34

See more details on using hashes here.

File details

Details for the file great_assertions-0.0.27-py3-none-any.whl.

File metadata

  • Download URL: great_assertions-0.0.27-py3-none-any.whl
  • Upload date:
  • Size: 14.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for great_assertions-0.0.27-py3-none-any.whl
Algorithm Hash digest
SHA256 25060aecd0e17bc7ccc89f511e109c8b52c5fa875f9d5683b6ffe19aaafadd65
MD5 063e00137c1765234fb16defa5d28261
BLAKE2b-256 ad38532fd5908b8147327b126aa226f513f12256736e6fe31bb2f29a04ffc638

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page