Skip to main content

Inspired by the library great-expectations

Project description

Great Assertions

serialbandicoot flake8 Lint codecov CodeQL

This library is inspired by the Great Expectations library. The library has made the various expectations found in Great Expectations available when using the inbuilt python unittest assertions.

For example if you wanted to use expect_column_values_to_be_between then you can access assertExpectColumnValuesToBeBetween.

Install

pip install great-assertions

Code example Pandas

from great_assertions import GreatAssertions
import pandas as pd

class GreatAssertionTests(GreatAssertions):
    def test_expect_table_row_count_to_equal(self):
        df = pd.DataFrame({"col_1": [100, 200, 300], "col_2": [10, 20, 30]})
        self.assertExpectTableRowCountToEqual(df, 3)

Code example PySpark

from great_assertions import GreatAssertions
from pyspark.sql import SparkSession

class GreatAssertionTests(GreatAssertions):

    def setUp(self):
        self.spark = SparkSession.builder.getOrCreate()

    def test_expect_table_row_count_to_equal(self):
        df = self.spark.createDataFrame(
            [
                {"col_1": 100, "col_2": 10},
                {"col_1": 200, "col_2": 20},
                {"col_1": 300, "col_2": 30},
            ]
        )
        self.assertExpectTableRowCountToEqual(df, 3)

List of available assertions

Pandas PySpark
assertExpectTableRowCountToEqual :white_check_mark: :white_check_mark:
assertExpectColumnValuesToBeBetween :white_check_mark: :white_check_mark:
assertExpectColumnValuesToMatchRegex :white_check_mark: :white_check_mark:
assertExpectColumnValuesToBeInSet :white_check_mark: :white_check_mark:
assertExpectColumnValuesToBeOfType :white_check_mark: :white_check_mark:
assertExpectTableColumnsToMatchOrderedList :white_check_mark: :white_check_mark:
assertExpectTableColumnsToMatchSet :white_check_mark: :white_check_mark:
assertExpectDateRangeToBeMoreThan :white_check_mark: :white_check_mark:
assertExpectDateRangeToBeLessThan :white_check_mark: :white_check_mark:
assertExpectDateRangeToBeBetween :white_check_mark: :white_check_mark:
assertExpectColumnMeanToBeBetween :white_check_mark: :white_check_mark:
assertExpectColumnValueCountsPercentToBeBetween :white_check_mark: :white_check_mark:

Assertion Descriptions

For a description of the assertions see Assertion Definitions

Running the tests

Executing the tests still require unittest, the following options have been tested with the examples provided.

Option 1

import unittest
suite = unittest.TestLoader().loadTestsFromTestCase(GreatAssertionTests)
runner = unittest.TextTestRunner(verbosity=2)
runner.run(suite) 

Options 2

if __name__ == '__main__':
    unittest.main()   

Notes

If you get an arrows function warning when running in Databricks, this will happen becuase a toPandas() method is called. The plan is to remove pandas conversion for Spark at a later date as use native PySpark code. For make sure the datasets are not too big, to cause the driver to crash.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

great-assertions-0.0.28.tar.gz (18.8 kB view details)

Uploaded Source

Built Distribution

great_assertions-0.0.28-py3-none-any.whl (11.3 kB view details)

Uploaded Python 3

File details

Details for the file great-assertions-0.0.28.tar.gz.

File metadata

  • Download URL: great-assertions-0.0.28.tar.gz
  • Upload date:
  • Size: 18.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for great-assertions-0.0.28.tar.gz
Algorithm Hash digest
SHA256 fca0871dbd9cabd086144139029a1b1d57406fc02fbf672d4f0b9766fbd69baf
MD5 b741196efc97611a056cdd19d7f94e18
BLAKE2b-256 c5df7e8437522666a8bb71dbc60276de398647c79193fa222f3d76e88a2c9241

See more details on using hashes here.

File details

Details for the file great_assertions-0.0.28-py3-none-any.whl.

File metadata

  • Download URL: great_assertions-0.0.28-py3-none-any.whl
  • Upload date:
  • Size: 11.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for great_assertions-0.0.28-py3-none-any.whl
Algorithm Hash digest
SHA256 ed4132a5e67d6d2955d179bea46e0124b1575db0a0ee88eef32a7d37dbdbadf5
MD5 a8e5ef7a479576feaf62d1f294bd3def
BLAKE2b-256 2af6858ab4eea6ca691031194a88af1fe78698aee3740a1c5e29ab347fd25a33

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page