Skip to main content

Inspired by the library great-expectations

Project description

Great Assertions

serialbandicoot flake8 Lint codecov CodeQL

This library is inspired by the Great Expectations library. The library has made the various expectations found in Great Expectations available when using the inbuilt python unittest assertions.

For example if you wanted to use expect_column_values_to_be_between then you can access assertExpectColumnValuesToBeBetween.

Install

pip install great-assertions

Code example Pandas

from great_assertions import GreatAssertions
import pandas as pd

class GreatAssertionTests(GreatAssertions):
    def test_expect_table_row_count_to_equal(self):
        df = pd.DataFrame({"col_1": [100, 200, 300], "col_2": [10, 20, 30]})
        self.assertExpectTableRowCountToEqual(df, 3)

Code example PySpark

from great_assertions import GreatAssertions
from pyspark.sql import SparkSession

class GreatAssertionTests(GreatAssertions):

    def setUp(self):
        self.spark = SparkSession.builder.getOrCreate()

    def test_expect_table_row_count_to_equal(self):
        df = self.spark.createDataFrame(
            [
                {"col_1": 100, "col_2": 10},
                {"col_1": 200, "col_2": 20},
                {"col_1": 300, "col_2": 30},
            ]
        )
        self.assertExpectTableRowCountToEqual(df, 3)

List of available assertions

Pandas PySpark
assertExpectTableRowCountToEqual :white_check_mark: :white_check_mark:
assertExpectColumnValuesToBeBetween :white_check_mark: :white_check_mark:
assertExpectColumnValuesToMatchRegex :white_check_mark: :white_check_mark:
assertExpectColumnValuesToBeInSet :white_check_mark: :white_check_mark:
assertExpectColumnValuesToBeOfType :white_check_mark: :white_check_mark:
assertExpectTableColumnsToMatchOrderedList :white_check_mark: :white_check_mark:
assertExpectTableColumnsToMatchSet :white_check_mark: :white_check_mark:
assertExpectDateRangeToBeMoreThan :white_check_mark: :white_check_mark:
assertExpectDateRangeToBeLessThan :white_check_mark: :white_check_mark:
assertExpectDateRangeToBeBetween :white_check_mark: :white_check_mark:
assertExpectColumnMeanToBeBetween :white_check_mark: :white_check_mark:
assertExpectColumnValueCountsPercentToBeBetween :white_check_mark: :white_check_mark:

Assertion Descriptions

For a description of the assertions see Assertion Definitions

Running the tests

Executing the tests still require unittest, the following options have been tested with the examples provided.

Option 1

import unittest
suite = unittest.TestLoader().loadTestsFromTestCase(GreatAssertionTests)
runner = unittest.TextTestRunner(verbosity=2)
runner.run(suite) 

Options 2

if __name__ == '__main__':
    unittest.main()   

Notes

If you get an arrows function warning when running in Databricks, this will happen becuase a toPandas() method is called. The plan is to remove pandas conversion for Spark at a later date as use native PySpark code. For make sure the datasets are not too big, to cause the driver to crash.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

great-assertions-0.0.33.tar.gz (18.9 kB view details)

Uploaded Source

Built Distribution

great_assertions-0.0.33-py3-none-any.whl (10.3 kB view details)

Uploaded Python 3

File details

Details for the file great-assertions-0.0.33.tar.gz.

File metadata

  • Download URL: great-assertions-0.0.33.tar.gz
  • Upload date:
  • Size: 18.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for great-assertions-0.0.33.tar.gz
Algorithm Hash digest
SHA256 f13b175f0d121b6abe9e1c6998f55e8951c356089b5fc9da47404b4f3141e56b
MD5 388180073a6bab6c54442e541e1b725c
BLAKE2b-256 66bb2938dfed6d421ae146299e6c08144fa4b24ec9929a420ea637e13b564e1f

See more details on using hashes here.

File details

Details for the file great_assertions-0.0.33-py3-none-any.whl.

File metadata

  • Download URL: great_assertions-0.0.33-py3-none-any.whl
  • Upload date:
  • Size: 10.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for great_assertions-0.0.33-py3-none-any.whl
Algorithm Hash digest
SHA256 ee8bfcb7aed171dfdc344cc86e6d84eae5e3da633938dae60dd90ea79d9f4be2
MD5 195da07130ee04a96d7cbf580b7e7bf2
BLAKE2b-256 53cedea1ba9d987ddb11f5e93da4486ce0712f468ae9985ee9ed8102a9857d4e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page