An Efficient and Unified Benchmark for GNN-based Recommendation.
Project description
GRecX
An Efficient and Unified Benchmark for GNN-based Recommendation.
Homepage and Documentation
Example Benchmark: Performance on Yelp and Gowalla with BPR Loss
Performance on Yelp with BPR Loss:
Performance on Gowalla with BPR Loss:
Demo
We recommend you get started with some demos.
Preliminary Comparison
LightGCN-Yelp dataset (featureless)
BCE-loss
Algo |
Precision@10 |
Precision@20 |
Recall@10 |
Recall@20 |
nDCG@10 |
nDCG@20 |
---|---|---|---|---|---|---|
MF |
0.029597 |
0.025495 |
0.032733 |
0.056086 |
0.037332 |
0.045805 |
NGCF |
0.024713 |
0.021893 |
0.028251 |
0.049611 |
0.031357 |
0.039549 |
LightGCN |
— |
— |
— |
— |
0.037350 |
0.045872 |
UltraGCN-single |
0.030652 |
0.026790 |
0.033913 |
0.058886 |
0.038576 |
0.047766 |
UltraGCN |
0.03553 |
0.030346 |
0.039526 |
0.067028 |
0.045365 |
0.055376 |
BPR-loss
Algo |
Precision@10 |
Precision@20 |
Recall@10 |
Recall@20 |
nDCG@10 |
nDCG@20 |
---|---|---|---|---|---|---|
MF |
0.031489 |
0.027303 |
0.034733 |
0.060333 |
0.040103 |
0.049406 |
NGCF |
0.030375 |
0.026699 |
0.034502 |
0.059984 |
0.038732 |
0.048351 |
LightGCN |
0.033544 |
0.028996 |
0.037277 |
0.064128 |
0.042907 |
0.052667 |
UltraGCN-single |
— |
— |
— |
— |
— |
— |
UltraGCN |
— |
— |
— |
— |
— |
— |
Note that “UltraGCN-single” uses loss with one negative sample and one negatvie loss weight
Cite
If you use GRecX in a scientific publication, we would appreciate citations to the following paper:
@misc{cai2021grecx,
title={GRecX: An Efficient and Unified Benchmark for GNN-based Recommendation},
author={Desheng Cai and Jun Hu and Shengsheng Qian and Quan Fang and Quan Zhao and Changsheng Xu},
year={2021},
eprint={2111.10342},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file grecx-0.0.8.tar.gz
.
File metadata
- Download URL: grecx-0.0.8.tar.gz
- Upload date:
- Size: 45.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7463cb69240955234ea531f3e00f7c6356bd3683dc430d4d3a51f97c145011b1 |
|
MD5 | e3e34d385e9301627aed2425083c7c9c |
|
BLAKE2b-256 | 4d289d53e5accbcb07689565ac76098cd91cab58945c3bc99e602890283c3eff |