Skip to main content

An Efficient and Unified Benchmark for GNN-based Recommendation.

Project description

https://raw.githubusercontent.com/maenzhier/GRecX/main/GRecX_LOGO_SQUARE.png

GRecX

An Efficient and Unified Benchmark for GNN-based Recommendation.

Homepage and Documentation

Example Benchmark: Performance on Yelp and Gowalla with BPR Loss

Performance on Yelp with BPR Loss:

https://raw.githubusercontent.com/maenzhier/GRecX/main/plots/bpr_yelp.png

Performance on Gowalla with BPR Loss:

https://raw.githubusercontent.com/maenzhier/GRecX/main/plots/bpr_gowalla.png

Demo

We recommend you get started with some demos.

Preliminary Comparison

LightGCN-Yelp dataset (featureless)

  • BCE-loss

Algo

Precision@10

Precision@20

Recall@10

Recall@20

nDCG@10

nDCG@20

MF

0.029597

0.025495

0.032733

0.056086

0.037332

0.045805

NGCF

0.024713

0.021893

0.028251

0.049611

0.031357

0.039549

LightGCN

0.037350

0.045872

UltraGCN-single

0.030652

0.026790

0.033913

0.058886

0.038576

0.047766

UltraGCN

0.03553

0.030346

0.039526

0.067028

0.045365

0.055376

  • BPR-loss

Algo

Precision@10

Precision@20

Recall@10

Recall@20

nDCG@10

nDCG@20

MF

0.031489

0.027303

0.034733

0.060333

0.040103

0.049406

NGCF

0.030375

0.026699

0.034502

0.059984

0.038732

0.048351

LightGCN

0.033544

0.028996

0.037277

0.064128

0.042907

0.052667

UltraGCN-single

UltraGCN

Note that “UltraGCN-single” uses loss with one negative sample and one negatvie loss weight

Cite

If you use GRecX in a scientific publication, we would appreciate citations to the following paper:

@misc{cai2021grecx,
title={GRecX: An Efficient and Unified Benchmark for GNN-based Recommendation},
author={Desheng Cai and Jun Hu and Shengsheng Qian and Quan Fang and Quan Zhao and Changsheng Xu},
year={2021},
eprint={2111.10342},
archivePrefix={arXiv},
primaryClass={cs.IR}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

grecx-0.0.4.9.tar.gz (45.8 kB view details)

Uploaded Source

File details

Details for the file grecx-0.0.4.9.tar.gz.

File metadata

  • Download URL: grecx-0.0.4.9.tar.gz
  • Upload date:
  • Size: 45.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.7.10

File hashes

Hashes for grecx-0.0.4.9.tar.gz
Algorithm Hash digest
SHA256 5cb08f83065813b552e9f07298a4ac3ebeb5aabe617d9efcb035d92953418252
MD5 1f2e1d50805eb5637170ca343b73d359
BLAKE2b-256 f328d4f7bfd8d9f86767a6454ae94fd8b90771e81cde63932a20163324499c06

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page