Skip to main content

gReLU is a python library to train, interpret, and apply deep learning models to DNA sequences

Project description

gReLU

gReLU is a Python library to train, interpret, and apply deep learning models to DNA sequences. Code documentation is available here.

Flowchart

Installation

To install from source:

git clone https://github.com/Genentech/gReLU.git
cd gReLU
pip install .

To install using pip:

pip install gReLU

Contributing

This project uses pre-commit. Please make sure to install it before making any changes:

pip install pre-commit
cd gReLU
pre-commit install

It is a good idea to update the hooks to the latest version:

pre-commit autoupdate

Additional requirements

If you want to use genome annotation features through the function grelu.io.genome.read_gtf, you will need to install the following UCSC utilities: genePredToBed, genePredToGtf, bedToGenePred, gtfToGenePred, gff3ToGenePred.

If you want to create bigWig files through the function grelu.data.preprocess.make_insertion_bigwig, you will need to install the following UCSC utilities: bedGraphToBigWig.

UCSC utilities can be installed from http://hgdownload.cse.ucsc.edu/admin/exe/, for example using the following commands:

rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/bedGraphToBigWig /usr/bin/
rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/genePredToBed /usr/bin/
rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/genePredToGtf /usr/bin/
rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/bedToGenePred /usr/bin/
rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/gtfToGenePred /usr/bin/
rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/gff3ToGenePred /usr/bin/

or via bioconda:

conda install -y \
bioconda::ucsc-bedgraphtobigwig \
bioconda::ucsc-genepredtobed    \
bioconda::ucsc-genepredtogtf    \
bioconda::ucsc-bedtogenepred    \
bioconda::ucsc-gtftogenepred    \
bioconda::ucsc-gff3togenepred

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

grelu-1.0.2.tar.gz (2.9 MB view details)

Uploaded Source

Built Distribution

gReLU-1.0.2-py3-none-any.whl (641.7 kB view details)

Uploaded Python 3

File details

Details for the file grelu-1.0.2.tar.gz.

File metadata

  • Download URL: grelu-1.0.2.tar.gz
  • Upload date:
  • Size: 2.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for grelu-1.0.2.tar.gz
Algorithm Hash digest
SHA256 c467a0bb30891702149ba77aca6b628c93c4a43052bf1c17616409a4b507e64a
MD5 42c1dc19a34e595f175c4bcb8d5d9622
BLAKE2b-256 7faf3192cfcb1790962a6ba29700b598e5f5c21081e22b771085eddd184045cd

See more details on using hashes here.

File details

Details for the file gReLU-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: gReLU-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 641.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for gReLU-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 4b6a12d9985d2e1e10bf1d6b55e3b8843ed72dd82a1cb46711f4eaa94a179088
MD5 69f88c89d53b6c658f4402e70eb35649
BLAKE2b-256 f4243945547a7e5afcb4aee2403d7f85a239aa9a873266547bcca0c807835dce

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page