Skip to main content

Griddly Python Libraries

Project description

Griddly Python

This module contains all you need to run the Griddly AI research environment using python.

Installation

Currently the library supports any python > 3.6. It is recommended to use a conda environment:

conda create --name griddly_env python=3.7
conda activate griddly_env
pip install griddly

Usage

Full documentation can be found here: https://griddly.readthedocs.org

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

griddly-1.6.7-cp311-cp311-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

griddly-1.6.7-cp311-cp311-manylinux_2_28_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

griddly-1.6.7-cp310-cp310-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

griddly-1.6.7-cp310-cp310-manylinux_2_28_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

griddly-1.6.7-cp310-cp310-manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.10

griddly-1.6.7-cp39-cp39-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

griddly-1.6.7-cp39-cp39-manylinux_2_28_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

griddly-1.6.7-cp39-cp39-manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.9

griddly-1.6.7-cp38-cp38-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

griddly-1.6.7-cp38-cp38-manylinux_2_28_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

griddly-1.6.7-cp38-cp38-manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.8

File details

Details for the file griddly-1.6.7-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: griddly-1.6.7-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for griddly-1.6.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 faa186c28099c164a57fede1ac0b1de0e173b4a19faa287b23ab8b9febad7a85
MD5 c86410da87ec4ae43093ec9a67d1cd96
BLAKE2b-256 e5bc17c593779ced1b1f8dc2fbb9dcdc78139d5696017fa707ae1f1291864a0d

See more details on using hashes here.

File details

Details for the file griddly-1.6.7-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for griddly-1.6.7-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4c153f1b18c3e7493cd7da140a92c79a05fa15a664b2ced32f663af87d0851cf
MD5 ace307ded9003cf0613a6bc9901c8322
BLAKE2b-256 1f16c68ff3c6338b12fba8d825d12e8b13909f32b1cb2d9e566256350a0eaccf

See more details on using hashes here.

File details

Details for the file griddly-1.6.7-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: griddly-1.6.7-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for griddly-1.6.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8df04e599f2fcc20e31d01d1e3a68c224508b903b13610e9d23dbf41ce07002e
MD5 73893949aff2423222c092c17c66fa90
BLAKE2b-256 f4b0dcdf96c0828b323bccd0afbba352f11395bde8de6862bcced95e6c29b51e

See more details on using hashes here.

File details

Details for the file griddly-1.6.7-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for griddly-1.6.7-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 916841daaf35f15f6dbad01824c89bc71117a0756e5477ef0f9a76391afc02cd
MD5 aa7f40abee5bd105683eff2d15729d17
BLAKE2b-256 b8185859a3cc26b7c2ca31875aa4577403eb76ba43eaa56ba65a063aa3b9929f

See more details on using hashes here.

File details

Details for the file griddly-1.6.7-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for griddly-1.6.7-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7f45a52a5ca17276cccfb012532431caf50677f15c1b185cce1faa757bc0e7e7
MD5 ece3b8d246a75d9bfe5f5d5cd7b733b2
BLAKE2b-256 11c57b92d1d80a3a5f90a47d2a047ac0d100943e888342b3a2b23496c1bbd181

See more details on using hashes here.

File details

Details for the file griddly-1.6.7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: griddly-1.6.7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.13

File hashes

Hashes for griddly-1.6.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 310c9e20e9c4a62f7ac60bc7af8e103fabc32dc725e5f2053a1047389659e592
MD5 7df857542685921888b81787534f6ee6
BLAKE2b-256 ee8c130fd2274f17ef5e2aa87713f095cae570c50c3db19a7983f5cc1e1f5b6e

See more details on using hashes here.

File details

Details for the file griddly-1.6.7-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for griddly-1.6.7-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0fa5c7fd123cd82787f1356012db5f22c6f579a7f4b4f031343cdae50c5a18d7
MD5 23ce2022845ed1eff5ba20fe532c2189
BLAKE2b-256 7c99fd9c0b58067f5173aeb5a5d693fc8879c534ad8a539fbb2864cfbd05a14b

See more details on using hashes here.

File details

Details for the file griddly-1.6.7-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for griddly-1.6.7-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d6bff9571ec547a32ecd7951206b7fd103135f1213b3d9c9f293f9d0b4668d6b
MD5 617d860b72fb38eca9ab1a0da597c087
BLAKE2b-256 273dea9d850626cea348a9d279216c22e8922ca7104d0c022f7e8c619c1119e6

See more details on using hashes here.

File details

Details for the file griddly-1.6.7-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: griddly-1.6.7-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 7.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for griddly-1.6.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3a358ccf71e3e6301ce72980d58dff4d65291113919355f82b365ccd82cb4543
MD5 7f02b65ef3f30b714a725bbe00982084
BLAKE2b-256 7dcf15957f609813a3b1149576644083148db49550e33ed8296dc097084bf0d2

See more details on using hashes here.

File details

Details for the file griddly-1.6.7-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for griddly-1.6.7-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a2dc2a876d279ba3d76cd93b2360c9de8a058705729ad766761e760f8cd6d4ad
MD5 43d39eaf5d0b0cdee5ce953e7aa117a0
BLAKE2b-256 2d8d89461647f500d6539b06dabfab3ea943fbed64dbd621f67494b0d3a4adef

See more details on using hashes here.

File details

Details for the file griddly-1.6.7-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for griddly-1.6.7-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c6dd76ca8af80932770edcd55ca47c862968a0bfe994315c31f2a24d34c7927
MD5 8117a4c40e7b4e507fa9196c86b1ce47
BLAKE2b-256 3df36bb48e1f257965264f721594e0bc771c2fef40b2cc553c75d0c2d7ff1a86

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page