A tool to run experiments based on defined grid and function with single iteration.
Project description
Grid Looper
A tool to run experiments based on defined grid and function with single iteration.
import sys
sys.path.append('../')
from python_modules.gridlooper import GridLooper
Usage examples
The examples contain:
- preparing runner function
- preparing search grid
- running experiments
- analysing results
1. Preparing runner function
Runner funtion should contain logic of experiment in a way that the parameters could be supplied with embedder_params
def runner_function(runner_params : dict, c : int):
result = int(runner_params['a']) + runner_params['b'] + c
return result
2. Preparing search grid
Experiment combos can be defined in short form, transformed into a list and filtered with exlusion_combos
. Some of the parameters in experiment definition could be ignored durring experiment with a use of exclusion_keys
parameter.
experiments_settings = {
'runner_params': {'a' : ['1', '2','4'],
'b' : [2, 6,10,100]},
'c' : [100, 500],#, 1000, 5000]
'name' : 'example experiment'
}
exclusion_keys = {'name'}
exclusion_combos = [{'runner_params': {'a': ['1','2'],
'b': [100, 6,10]}}]
gl = GridLooper(
# dictionary of all possible parameter combos
experiments_settings = experiments_settings,
# keys from the experiments_settings to be ignored
exclusion_keys = exclusion_keys,
# combos from experiments_settings to be exluded
exclusion_combos = exclusion_combos,
# function that be run for each of experiment combos
runner_function = runner_function,
# optional parameter to be supplied to runner function outside of experiment settings
data = None,
# path to save experiment results
save_path = 'example_run.dill')
gl.prepare_search_grid(
# optional if definer earlier
experiments_settings = experiments_settings,
exclusion_keys = exclusion_keys,
exclusion_combos = exclusion_combos
)
gl.experiment_configs
[{'runner_params': {'a': '1', 'b': 2},
'c': 100,
'config_id': '54eac3ee5ce6ae6d126502ee87dbbafce54111b346b895e1d5e29c50097fa800'},
{'runner_params': {'a': '1', 'b': 2},
'c': 500,
'config_id': 'b2ef1c49a36375e88203f9ff1f01db69457fc9eb6435333aaafee68bb871d9da'},
{'runner_params': {'a': '2', 'b': 2},
'c': 100,
'config_id': '4b1a723841dbf9f6e2a415159d0deb938373ba21506285289e46cafdcf455f05'},
{'runner_params': {'a': '2', 'b': 2},
'c': 500,
'config_id': '44a22efdfe7e385b4fbaeb84976ac0d10703a98902ce134cddd1000e09ba156a'},
{'runner_params': {'a': '4', 'b': 2},
'c': 100,
'config_id': '6dc5a94f832532513b1d739fdad694029b6b9d97cec9fa869ce3d75b822c23ce'},
{'runner_params': {'a': '4', 'b': 2},
'c': 500,
'config_id': '9e7ec3d2e9d7d5ccf4b8c05b9a7a145fc443f77cd7031dcdaf139a77f88d5944'},
{'runner_params': {'a': '4', 'b': 6},
'c': 100,
'config_id': 'dcd7c1aeb1b3c41ab924ece9ed471d682cef319304a9675dfd1f7d27f6e29c7c'},
{'runner_params': {'a': '4', 'b': 6},
'c': 500,
'config_id': 'ad38629f25dd962d157ee8b36b1fc34a54079f8b08d0d4e79fd45cecfa167d49'},
{'runner_params': {'a': '4', 'b': 10},
'c': 100,
'config_id': '6cd8cc53587798f4fc2583a122a7cad6e79cb7b6c10639e6a9714d12fa2c3092'},
{'runner_params': {'a': '4', 'b': 10},
'c': 500,
'config_id': '495efcc2399e24fed5a5dee4b3909f27688b7723eb62b28be6ff6eb74c4e8574'},
{'runner_params': {'a': '4', 'b': 100},
'c': 100,
'config_id': '2dcdd7a719ce8fa4731c8d9adefd131d809fd29e014aa9acd3be8a6538cc8765'},
{'runner_params': {'a': '4', 'b': 100},
'c': 500,
'config_id': '64f83d857c2c3a0030bd187330da30dc6d4aaf2ae1418f150b9902a269a4f3d8'}]
3. Running experiments
executing_experimets
function will run runner_function
for each set of parameters from defined experiment_configs
for a select loop strategy.
gl.executing_experimets(
# optional of defined earlier
runner_function = runner_function,
experiment_configs = gl.experiment_configs,
data = None,
loop_type= 'brute',
save_path = 'example_run.dill'
)
Looping: 0%| | 0/12 [00:00<?, ?item/s]
Looping: 100%|██████████| 12/12 [00:00<00:00, 156796.41item/s]
4. Analysing results
gl.experiment_results['results']
{'54eac3ee5ce6ae6d126502ee87dbbafce54111b346b895e1d5e29c50097fa800': 103,
'b2ef1c49a36375e88203f9ff1f01db69457fc9eb6435333aaafee68bb871d9da': 503,
'4b1a723841dbf9f6e2a415159d0deb938373ba21506285289e46cafdcf455f05': 104,
'44a22efdfe7e385b4fbaeb84976ac0d10703a98902ce134cddd1000e09ba156a': 504,
'6dc5a94f832532513b1d739fdad694029b6b9d97cec9fa869ce3d75b822c23ce': 106,
'9e7ec3d2e9d7d5ccf4b8c05b9a7a145fc443f77cd7031dcdaf139a77f88d5944': 506,
'dcd7c1aeb1b3c41ab924ece9ed471d682cef319304a9675dfd1f7d27f6e29c7c': 110,
'ad38629f25dd962d157ee8b36b1fc34a54079f8b08d0d4e79fd45cecfa167d49': 510,
'6cd8cc53587798f4fc2583a122a7cad6e79cb7b6c10639e6a9714d12fa2c3092': 114,
'495efcc2399e24fed5a5dee4b3909f27688b7723eb62b28be6ff6eb74c4e8574': 514,
'2dcdd7a719ce8fa4731c8d9adefd131d809fd29e014aa9acd3be8a6538cc8765': 204,
'64f83d857c2c3a0030bd187330da30dc6d4aaf2ae1418f150b9902a269a4f3d8': 604}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file gridlooper-0.0.2.tar.gz
.
File metadata
- Download URL: gridlooper-0.0.2.tar.gz
- Upload date:
- Size: 10.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 499e14d86c97b370eee544d07888b6cfff0a33ae84ceaf629f70f23dad9fb957 |
|
MD5 | ad8cd8abfb3102e32a9f0222f5673ee7 |
|
BLAKE2b-256 | e8b2beaa9c8d2df61e7730092c5292fc5cd536c538e25467a009988983b143c3 |
File details
Details for the file gridlooper-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: gridlooper-0.0.2-py3-none-any.whl
- Upload date:
- Size: 7.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.0 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cfebbe02dc6c5c99e8715e647f8ec2e96504c704994a297afdef1f61110a8b86 |
|
MD5 | 7b8048f167cc7d7919a7bc77ab3780d7 |
|
BLAKE2b-256 | 8ea5b287a6c6a35a46d088d183a9bbd0cacdbb130b395fa09c0c53899f92a48e |