Skip to main content

Tool set for software development analytics

Project description

GrimoireLab

grimoirelab-showcase

GrimoireLab is a CHAOSS toolset for software development analytics. It includes a coordinated set of tools to retrieve data from systems used to support software development (repositories), store it in databases, enrich it by computing relevant metrics, and make it easy to run analytics and visualizations on it.

You can learn more about GrimoireLab in the GrimoireLab tutorial, or visit the GrimoireLab website.

Metrics available in GrimoireLab are, in part, developed in the CHAOSS project. For more information regarding CHAOSS metrics, see the latest release at: https://chaoss.community/metrics/

Getting started

To ease the newcomer experience we are providing a default setup to analyze git activity for this repository. For this set up, there are several options to run GrimoireLab:

Using docker-compose

Requirements:

root@test-68b8628f:~# git --version
git version 2.17.1
root@test-68b8628f:~# docker --version
Docker version 19.03.1, build 74b1e89
root@test-68b8628f:~# docker-compose --version
docker-compose version 1.22.0, build f46880fe

Steps:

  1. Clone this project:
git clone https://github.com/chaoss/grimoirelab
  1. Go to docker-compose folder and run the following command:
cd grimoirelab/docker-compose
docker-compose up -d

Your dashboard will be ready after a while at http://localhost:8000. The waiting time depends on the amount of data to fetch from a repo, for small repositories you can expect your data to be visible in the dashboard after 10-15 minutes.

More details or troubleshooting in the docker-compose folder.

Using docker run

Requirements:

root@test-68b8628f:~# git --version
git version 2.17.1
root@test-68b8628f:~# docker --version
Docker version 19.03.1, build 74b1e89
  • Hardware: 2 CPU cores, 8GB memory RAM and set
  • ElasticSearch and Kibana up and running.
  • SortingHat up and running

Steps:

  1. Clone this project:
git clone https://github.com/chaoss/grimoirelab
  1. Go to the project folder and run the following command:
cd grimoirelab
docker run --net=host \ 
    -v $(pwd)/default-grimoirelab-settings/projects.json:/home/grimoire/conf/projects.json \
    -v $(pwd)/default-grimoirelab-settings/setup-docker.cfg:/home/grimoire/conf/setup.cfg \
    -t grimoirelab/grimoirelab

Your dashboard will be ready after a while at http://localhost:8000. The waiting time depends on the amount of data to fetch from a repo, for small repositories you can expect your data to be visible in the dashboard after 10-15 minutes.

More details in the docker folder.

Breaking changes

GrimoireLab 1.3.0. SortingHat permission groups.

Starting from GrimoireLab 1.3.0, creating new users in SortingHat requires assigning them to a permission group. By default, they will have read-only permissions. Please refer to the following documentation for instructions on how to update permissions: assign users to permission groups

GrimoireLab components

Currently, GrimoireLab toolkit is organized in the following repositories:

There are also some components built by the GrimoreLab community, which can be useful for you. Other related repositories are:

Contents of this repository

This repository is for content relevant to GrimoireLab as a whole. For example:

  • Issues for new features or bug reports that affect more than one GrimoireLab module. In this case, let's open an issue here, and when implementing the fix or the feature, let´s comment about the specific tickets in the specific modules that are used. For example, when supporting a new datasource, we will need patches (at least) in Perceval, GrimoireELK and panels. In this case, we would open a feature request (or the user story) for the whole case, an issue (and later a pull request) in Perceval for the data retriever, same for GrimoireELK for the enriching code, and same for panels for the Kibiter panels.

  • Release notes for most GrimoireLab components (directory releases).

  • Docker container for showcasing GrimoireLab (directory docker). Includes a Dockerfile and configuration files for the GrimoireLab containers that can be used to demo the technology, and can be the basis for real deployments. See more information in the docker README.md file.

  • If you feel more comfortable with docker-compose, the docker-compose folder includes instructions and configuration files to deploy GrimoireLab using docker-compose command.

  • Source code of the GrimoireLab components is available in src. Each directory is a Git submodule, so its contents will not be available after cloning the repository. To fetch all the data, and get the latest version, you can run the following command:

git submodule update --init --remote
  • How releases of GrimoireLab are built and tested: Building

Citation

If you use GrimoireLab in your research papers, please refer to GrimoireLab: A toolset for software development analytics:

APA style:

Dueñas S, Cosentino V, Gonzalez-Barahona JM, del Castillo San Felix A, Izquierdo-Cortazar D, Cañas-Díaz L, Pérez García-Plaza A. 2021. GrimoireLab: A toolset for software development analytics. PeerJ Computer Science 7:e601 https://doi.org/10.7717/peerj-cs.601

BibTeX / BibLaTeX:

@Article{duenas2021:grimoirelab,
  author = 	 {Dueñas, Santiago and Cosentino, Valerio and Gonzalez-Barahona, Jesus M. and del Castillo San Felix, Alvaro and Izquierdo-Cortazar,  Daniel and Cañas-Díaz, Luis and Pérez García-Plaza, Alberto},
  title = 	 {GrimoireLab: A toolset for software development analytics},
  journaltitle = {PeerJ Computer Science},
  date = 	 {2021-07-09},
  volume = 	 7,
  number = 	 {e601},
  doi = 	 {10.7717/peerj-cs.601},
  url = 	 {https://doi.org/10.7717/peerj-cs.601}}

Contributing

Contributions are welcome, please check the Contributing Guidelines.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

grimoirelab-1.7.0.tar.gz (17.3 kB view details)

Uploaded Source

Built Distribution

grimoirelab-1.7.0-py3-none-any.whl (19.5 kB view details)

Uploaded Python 3

File details

Details for the file grimoirelab-1.7.0.tar.gz.

File metadata

  • Download URL: grimoirelab-1.7.0.tar.gz
  • Upload date:
  • Size: 17.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.7 Linux/6.5.0-1025-azure

File hashes

Hashes for grimoirelab-1.7.0.tar.gz
Algorithm Hash digest
SHA256 492b33fdf805d35f1da84b7b2b7743d4dba4202597640dc4fafae86fcad9f2d4
MD5 b08b1ee060719945fcd60703281b20a1
BLAKE2b-256 ee819868bd60159f1582faf86ee839f0df257043be060fe71423db7924b7fa58

See more details on using hashes here.

File details

Details for the file grimoirelab-1.7.0-py3-none-any.whl.

File metadata

  • Download URL: grimoirelab-1.7.0-py3-none-any.whl
  • Upload date:
  • Size: 19.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.4 CPython/3.12.7 Linux/6.5.0-1025-azure

File hashes

Hashes for grimoirelab-1.7.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1800a3d5d8d5f576a060ada8cfbf5596216aee323d41fe44ff42f70f30c20e90
MD5 3e408560aa00e95ecbc404ec0d7fd1ec
BLAKE2b-256 72a5b0f14f5ef36739cf87a16cdb65f5df050fa0a159de8f1d2a23cf87887786

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page