Skip to main content

Grid Search in Python

Project description

GriSPy (Grid Search in Python)

logo

PyPi Version Build Status Documentation Status Coverage Status License: MIT Python 3.6+ ascl:1912.013 https://github.com/leliel12/diseno_sci_sfw

GriSPy is a regular grid search algorithm for quick nearest-neighbor lookup.

This class indexes a set of k-dimensional points in a regular grid providing a fast aproach for nearest neighbors queries. Optional periodic boundary conditions can be provided for each axis individually.

GriSPy has the following queries implemented:

  • bubble_neighbors: find neighbors within a given radius. A different radius for each centre can be provided.
  • shell_neighbors: find neighbors within given lower and upper radius. Different lower and upper radius can be provided for each centre.
  • nearest_neighbors: find the nth nearest neighbors for each centre.

And the following method is available:

  • set_periodicity: define the periodicity conditions.

Requirements

You need Python 3.6 or later to run GriSPy. You can have multiple Python versions (2.x and 3.x) installed on the same system without problems.

Standard Installation

GriSPy is available at PyPI. You can install it via the pip command

    $ pip install grispy

Development Install

Clone this repo and then inside the local directory execute

    $ pip install -e .

Citation

If you use GriSPy in a scientific publication, we would appreciate citations to the following paper:

Chalela, M., Sillero, E., Pereyra, L., García, M. A., Cabral, J. B., Lares, M., & Merchán, M. (2020). GriSPy: A Python package for fixed-radius nearest neighbors search. 10.1016/j.ascom.2020.100443.

Bibtex

@ARTICLE{Chalela2021,
       author = {{Chalela}, M. and {Sillero}, E. and {Pereyra}, L. and {Garcia}, M.~A. and {Cabral}, J.~B. and {Lares}, M. and {Merch{\'a}n}, M.},
        title = "{GriSPy: A Python package for fixed-radius nearest neighbors search}",
      journal = {Astronomy and Computing},
     keywords = {Data mining, Nearest-neighbor search, Methods, Data analysis, Astroinformatics, Python package},
         year = 2021,
        month = jan,
       volume = {34},
          eid = {100443},
        pages = {100443},
          doi = {10.1016/j.ascom.2020.100443},
       adsurl = {https://ui.adsabs.harvard.edu/abs/2021A&C....3400443C},
      adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

Full-text: https://arxiv.org/abs/1912.09585

Authors

Martin Chalela (E-mail: mchalela@unc.edu.ar), Emanuel Sillero, Luis Pereyra, Alejandro Garcia, Juan B. Cabral, Marcelo Lares, Manuel Merchán

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

grispy-0.1.0.tar.gz (18.8 kB view details)

Uploaded Source

File details

Details for the file grispy-0.1.0.tar.gz.

File metadata

  • Download URL: grispy-0.1.0.tar.gz
  • Upload date:
  • Size: 18.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.5

File hashes

Hashes for grispy-0.1.0.tar.gz
Algorithm Hash digest
SHA256 766e7989be2363f381fe376d0a47c6da2e6b19b8445794e508ddbbb3cd51abf9
MD5 048242f128730f53abbe3383caa64b6d
BLAKE2b-256 5be731f7315742586d7c98e91dd7cbf30f20c55f4473dcfb8e88f164c27a7dd8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page