Skip to main content

Grism redshift and line analysis software

Project description

examples/grizli_logo.png https://github.com/gbrammer/grizli/actions/workflows/python-package.yml/badge.svg https://badge.fury.io/py/grizli.svg https://zenodo.org/badge/DOI/10.5281/zenodo.1146904.svg Documentation Status

Grism redshift & line analysis software for space-based slitless spectroscopy

What is grizli?

This early release of grizli is intended to demonstrate and demystify some general techniques for manipulating HST slitless spectroscopic observations, providing software kernels to address questions such as

“How does the WFC3/IR G141 grism disperse the spectrum of a star/galaxy at pixel position (x,y) in my F140W direct image?”.

Much of the background related to this question in the context of the currently available software tools was discussed in a document by Brammer, Pirzkal and Ryan (2014). Along with a detailed description of the format of the configuration files originally developed for the aXe software, we provided a compact Python script to address exactly the question above and strip away all of the many layers of bookkeeping, file-IO, etc. in existing analysis pipelines such as aXe (Kummel et al. 2009) and “THREEDHST” (Brammer et al. 2012, Momcheva et al. 2015). In fact, that relatively simple script serves as the low-level kernel for the way grizli computes the grism dispersion.

Eventually, grizli is intended to encourage and enable general users to move away from simple “data reduction” (e.g., extracting a 1D spectrum of a single object akin to standard slit spectroscopy) and toward more quantitative and comprehensive modeling and fitting of slitless spectroscopic observations, which typically involve overlapping spectra of hundreds or thousands of objects in exposures taken with one or more separate grisms and at multiple dispersion position angles. The products of this type of analysis will be complete and uniform characterization of the spectral properties (e.g., continuum shape, redshifts, line fluxes) of all objects in a given exposure taken in the slitless spectroscopic mode.

Installation & Documentation

Installation instructions and documentation (in progress) can be found at http://grizli.readthedocs.io.

Working Examples

The following are IPython/jupyter notebooks demonstrating various aspects of the code functionality. They render statically in the GitHub pages or can be run locally after cloning and installing the software repository.

  • Grizli-Pipeline : End-to-end processing of WFC3/IR data.

    1. Query the MAST archive and automatically download files

    2. Image pre-processing (astrometric alignment & background subtraction)

    3. Field contamination modeling

    4. Spectral extractions

    5. Redshift & emission line fits (multiple grisms)

  • Fit-with-Photometry : Demonstrate simultaneous fitting with grism spectra + ancillary photometry

  • NewSpectrumFits: Demonstration of the lower-level fitting tools

    1. Unify the fitting tools between the stacked and exposure-level 2D cutouts (“beams”).

  • Fit-Optimization (09.14.17): Custom fitting (hasn’t been tested recently)

    1. Demonstrate some of the workings behind the fitting wrapper scripts by defining custom model functions with parameters to optimize.

The notebooks below are deprecated and haven’t been tested against the master branch since perhaps late 2017.

  • Grizli Demo: Simple interaction with WFC3/IR spectra

  • Basic-Sim (5.5.16): Basic simulations based on single WFC3/IR grism and direct exposures

  • multimission-simulation (5.11.16):

    1. Demonstration of more advanced simulation techniques using deep image mosaics and external catalogs/segmentation images as reference.

    2. Provide a comparison between dispersed spectra from WFC3/G141, JWST/NIRISS and WFIRST.

  • WFC3IR_Reduction (9.6.16): End-to-end processing of WFC3/IR data.

    1. Pre-processing of files downloaded from MAST (astrometric alignment & background subtraction)

    2. Field contamination modeling

    3. Spectral extractions

    4. Redshift & emission line fits (multiple grisms)

  • NIRISS-simulation (11.11.16): Simulation and analysis of JWST/NIRISS observations

    1. Simulate NIRISS spectra in three blocking filters and two orients offset by 90 degrees.

    2. Simulation field taken from the Hubble WFC3/IR Ultra-Deep Field, with the WFC3 F140W image as the morphological reference and photo-z templates taken as the spectral models.

    3. Extract spectra and fit redshifts and emission lines from the combined six exposures.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

grizli-1.7.6.tar.gz (7.2 MB view details)

Uploaded Source

Built Distributions

grizli-1.7.6-cp311-cp311-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

grizli-1.7.6-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

grizli-1.7.6-cp311-cp311-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

grizli-1.7.6-cp310-cp310-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

grizli-1.7.6-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

grizli-1.7.6-cp310-cp310-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

grizli-1.7.6-cp39-cp39-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

grizli-1.7.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

grizli-1.7.6-cp39-cp39-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

grizli-1.7.6-cp38-cp38-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

grizli-1.7.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

grizli-1.7.6-cp38-cp38-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

grizli-1.7.6-cp37-cp37m-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

grizli-1.7.6-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

grizli-1.7.6-cp37-cp37m-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file grizli-1.7.6.tar.gz.

File metadata

  • Download URL: grizli-1.7.6.tar.gz
  • Upload date:
  • Size: 7.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for grizli-1.7.6.tar.gz
Algorithm Hash digest
SHA256 08191b8a6b76a8b55e5e5559b059b9036f703284955cbf5d07dc2f63ecf5bc4a
MD5 57ed54f2fe102ab642dd0be9527187a9
BLAKE2b-256 4b34dde44262a872d95e471dc7a2daeb48ab20b09bab90c14a19498b96b1e535

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.6-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.6-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 16ac72e2a2aa519dcd9789f3beb7c9e024698b2b7d642efb45199085b2f9bb3c
MD5 84312bbaacc0747aefea7d11f359622c
BLAKE2b-256 9bf0ee21321cabe06e8ffb54351d38732ea8efded0e244b09d3940779c163948

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.6-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.6-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 edf18fa2351714b38d020121a47649572cd8ca82dacf1f6510834c9128f779f0
MD5 b043aad7def43026327eb3891e617719
BLAKE2b-256 54c5a908d6d0d31634395fc1054d5ef23f725b77206c96142d7d37321ac62ede

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.6-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.6-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f117129a3ccdb157ae362125d875bddac9f9af4c9f6267d4bcfcfa63726aa545
MD5 a7e61f92b19c64491c2a4e11b3a6f6bb
BLAKE2b-256 74ab3cfc663fd04862e546bdc8d2d09d19490826a1a14d43305ae80d76e5b6d2

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.6-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.6-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dca770c3c480bc0f1c3108a53fca942916773957b29252f61638d4769102aa6a
MD5 66b92106207fa80e5a6aef1a918ccc8e
BLAKE2b-256 cd552f0a73fd30e06c9ed99ce7955bd68243b4b4884f790e971cc50430ea6ca0

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.6-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.6-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 38e34924d31c5283ddb853fd12839d9b8be9c32a69915a8f11a3f11083d95c31
MD5 a1ccd01789db14ae08f71dc1eb069a70
BLAKE2b-256 8eabf903685520235709c19f5f83c9f172cce93ee9f5b0726d3a308c14014a35

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 93308ffd53b47b3849fb63b87903d2203a0a8ff140bc50c43483e94e3bdc4c49
MD5 405ef4da561b3361be2b964d05e95f7f
BLAKE2b-256 aa35179681d44a5f9522ea2e568e5409f1078ddb8fa75f36dc823ed12aeb3440

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.6-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.6-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1f97818b2cdeb4006932d12c2e3b9dfdc2d0a4d8c3ce2cf61b0fd793b705b397
MD5 a7f44561a62f13ac79c321f4c7ee6b4e
BLAKE2b-256 a917753d392f44a2ea4e715b79522b02b328cfd80fe1ceb7e3fa8a765e246d2b

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8921f41e1b17290e83f17d67648a337da0fde25ef1ce88c697b9d6f7f07da366
MD5 7a8657c18b845aa172b4bf6c905a1e72
BLAKE2b-256 c184a30410f37fc94fc2228bb731420c055c1156a40637b5a603d48c21aef710

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 07e03318718e879a99523a3bf0dcc5cb7b72328815e44041c2d52831dde37650
MD5 eed171f337cb0ae6bd38d483cfe610db
BLAKE2b-256 f1bd8fc6c6d299e15dafab999b22b5951c0f38dd728a8e4cc29615736357e3db

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.6-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.6-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d9cffe8406294728cf9f83eb1e523ee1127e8047cc77c8801cc67232e7bc03b5
MD5 823c79946caec9f6c07a8b835ede0613
BLAKE2b-256 55fb8a1cb196d3b1a8f059a003ed0d795919b332beb434dc834b41152d8364bd

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 071723821c18fb94817101903b0874d2118a4eef89ffb62d546c31b835355060
MD5 f0695eaf98e4b94626dcbfe090a2c0c0
BLAKE2b-256 2376ad6d3592646c42e093231ed8cd220db0a667681336d3758a62a1bb80a9fd

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 171c7d08f83126f7ea53b287f9531f2df0c284704fb8235452578d125d6083e2
MD5 88b0f2699467560dd8138c786d0d5047
BLAKE2b-256 da1998e7a6f2f0d3909bf204b49dc50b935e6542cd607161eba1235c6862b548

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.6-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.6-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c0ec58083ab8f68a36fe4c1efc6d1ae41d7c24df5241df8e16bfcd88d71ff881
MD5 513c0f04d5c9db9f5f6b0cd25fadaafc
BLAKE2b-256 63c2d68f878bf9cf682f8c42fce508191b0ee2ad25c3116912407c2c81de8636

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.6-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.6-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 31260e0b44c5122da5dcaa7fae30531fe215b492ace89eb478857980ff06bac9
MD5 f68e287018ef03d4aae50dc09d91d5da
BLAKE2b-256 bae1a5f43745f452a660f69631e6f6fab1056e1c63015a296843df4ad9789d1d

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.6-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.6-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b7269f30cf0647c1497146b78249d364202abc193125c27972899bbae8924634
MD5 83a020fc022343d60e19f2a03e931748
BLAKE2b-256 05722c46c149cbf28f029dbd97be5e1bf7d33f4c1d4bd575ce25523bf3b20f3a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page