Skip to main content

Grism redshift and line analysis software

Project description

examples/grizli_logo.png https://github.com/gbrammer/grizli/actions/workflows/python-package.yml/badge.svg https://badge.fury.io/py/grizli.svg https://zenodo.org/badge/DOI/10.5281/zenodo.1146904.svg Documentation Status

Grism redshift & line analysis software for space-based slitless spectroscopy

What is grizli?

This early release of grizli is intended to demonstrate and demystify some general techniques for manipulating HST slitless spectroscopic observations, providing software kernels to address questions such as

“How does the WFC3/IR G141 grism disperse the spectrum of a star/galaxy at pixel position (x,y) in my F140W direct image?”.

Much of the background related to this question in the context of the currently available software tools was discussed in a document by Brammer, Pirzkal and Ryan (2014). Along with a detailed description of the format of the configuration files originally developed for the aXe software, we provided a compact Python script to address exactly the question above and strip away all of the many layers of bookkeeping, file-IO, etc. in existing analysis pipelines such as aXe (Kummel et al. 2009) and “THREEDHST” (Brammer et al. 2012, Momcheva et al. 2015). In fact, that relatively simple script serves as the low-level kernel for the way grizli computes the grism dispersion.

Eventually, grizli is intended to encourage and enable general users to move away from simple “data reduction” (e.g., extracting a 1D spectrum of a single object akin to standard slit spectroscopy) and toward more quantitative and comprehensive modeling and fitting of slitless spectroscopic observations, which typically involve overlapping spectra of hundreds or thousands of objects in exposures taken with one or more separate grisms and at multiple dispersion position angles. The products of this type of analysis will be complete and uniform characterization of the spectral properties (e.g., continuum shape, redshifts, line fluxes) of all objects in a given exposure taken in the slitless spectroscopic mode.

Installation & Documentation

Installation instructions and documentation (in progress) can be found at http://grizli.readthedocs.io.

Working Examples

The following are IPython/jupyter notebooks demonstrating various aspects of the code functionality. They render statically in the GitHub pages or can be run locally after cloning and installing the software repository.

  • Grizli-Pipeline : End-to-end processing of WFC3/IR data.

    1. Query the MAST archive and automatically download files

    2. Image pre-processing (astrometric alignment & background subtraction)

    3. Field contamination modeling

    4. Spectral extractions

    5. Redshift & emission line fits (multiple grisms)

  • Fit-with-Photometry : Demonstrate simultaneous fitting with grism spectra + ancillary photometry

  • NewSpectrumFits: Demonstration of the lower-level fitting tools

    1. Unify the fitting tools between the stacked and exposure-level 2D cutouts (“beams”).

  • Fit-Optimization (09.14.17): Custom fitting (hasn’t been tested recently)

    1. Demonstrate some of the workings behind the fitting wrapper scripts by defining custom model functions with parameters to optimize.

The notebooks below are deprecated and haven’t been tested against the master branch since perhaps late 2017.

  • Grizli Demo: Simple interaction with WFC3/IR spectra

  • Basic-Sim (5.5.16): Basic simulations based on single WFC3/IR grism and direct exposures

  • multimission-simulation (5.11.16):

    1. Demonstration of more advanced simulation techniques using deep image mosaics and external catalogs/segmentation images as reference.

    2. Provide a comparison between dispersed spectra from WFC3/G141, JWST/NIRISS and WFIRST.

  • WFC3IR_Reduction (9.6.16): End-to-end processing of WFC3/IR data.

    1. Pre-processing of files downloaded from MAST (astrometric alignment & background subtraction)

    2. Field contamination modeling

    3. Spectral extractions

    4. Redshift & emission line fits (multiple grisms)

  • NIRISS-simulation (11.11.16): Simulation and analysis of JWST/NIRISS observations

    1. Simulate NIRISS spectra in three blocking filters and two orients offset by 90 degrees.

    2. Simulation field taken from the Hubble WFC3/IR Ultra-Deep Field, with the WFC3 F140W image as the morphological reference and photo-z templates taken as the spectral models.

    3. Extract spectra and fit redshifts and emission lines from the combined six exposures.

Project details


Release history Release notifications | RSS feed

This version

1.7.7

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

grizli-1.7.7.tar.gz (7.2 MB view details)

Uploaded Source

Built Distributions

grizli-1.7.7-cp311-cp311-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

grizli-1.7.7-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

grizli-1.7.7-cp311-cp311-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

grizli-1.7.7-cp310-cp310-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

grizli-1.7.7-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

grizli-1.7.7-cp310-cp310-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

grizli-1.7.7-cp39-cp39-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

grizli-1.7.7-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

grizli-1.7.7-cp39-cp39-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

grizli-1.7.7-cp38-cp38-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

grizli-1.7.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

grizli-1.7.7-cp38-cp38-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

grizli-1.7.7-cp37-cp37m-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

grizli-1.7.7-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

grizli-1.7.7-cp37-cp37m-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file grizli-1.7.7.tar.gz.

File metadata

  • Download URL: grizli-1.7.7.tar.gz
  • Upload date:
  • Size: 7.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for grizli-1.7.7.tar.gz
Algorithm Hash digest
SHA256 8fb30079922f87fefd40356b46966e48471f50e721d5310c4539622c3a6cda05
MD5 d5eea967f79c3e8e4748940d55d37aff
BLAKE2b-256 af5d38b3dd4b04fdeb0656bc4f3255903c1a229e5f29236745d4208bf9a631e3

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.7-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.7-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 862aaa510e60357ca72f592dfcf526a8539970f8ea4986655589d2656452bb60
MD5 baa8eda3ce7582173b89d0bbebd74413
BLAKE2b-256 93097a344c10d9926bbfb5c121e1b380b3a8d0433d3b40140225bc61a73e5779

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.7-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.7-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5e1448f322aa4d512f504f3b377c7dcc42382ca78dcd893092cd7d19cf96a36e
MD5 92790bdd61486a9d43080f7f38046824
BLAKE2b-256 7b9f06e08ad9fface740fdd1ed48959649c1261cb230e1b6589843c750d25849

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.7-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.7-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa84b2bd24f79884d3109516d2eb91bff2d3d1d2c6fa08ae247e6660be2cafe4
MD5 d2ce9c021d929915ff9db9ee357c3f38
BLAKE2b-256 3aa3eb0fdf4747655885696a9594a623b5ae5e69fc22a4e45095e7601a65ff6e

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.7-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.7-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 735993b44c51645c2a4dee94fd2b2f1cf607a3b01583ba2e55bc7580c1405edb
MD5 4097e279541e7b53bb912048a712db77
BLAKE2b-256 cee3554e3f70f354b2ce59b6af375198b2f7f9588934014d67a630413b78c90a

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.7-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.7-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3254a93f8b225585a534a1c27b7ab9ef245113f7be20d4af8d7a7e21215b77f5
MD5 19428d1aa8d3872d40a81fd5c86deb7c
BLAKE2b-256 22029cfe038424d4b9fdf894eb76ed61b10dfa4c5f425f446043ad72587b103c

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.7-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.7-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ba9b17e5d2497791d4fd75232642053fc13e52e1a8d4b046fcbe3d18ed01bbd4
MD5 68b96ccacd891fea05c13383f0a010e7
BLAKE2b-256 8361569e9334558a751c421f617478b97dd5900c31310f000622f79c92f40b00

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.7-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.7-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1e4726fb3d8ba17339b9f86e84602fac70f6ddb9cd4e405dbc0523a4468fd411
MD5 dc4282317f3bce3197ee0ffddb49c20e
BLAKE2b-256 72408381412aa91b0456df6e87546c35bf9903a9d3a4f43e842cfd58358e6f11

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.7-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.7-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1480d2c4310ad955611636faf8cf5a89d918cd2fa13506e50cda97e01dd5ceb9
MD5 9993b1bb6f619cfbd23637fbecd40053
BLAKE2b-256 0ddff59897cc46e2f3177ab2b6dbd7c3798a9cf83f3abb4d9ada49e12d973a48

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5951fa522818419ed520d87dbe45d61294e659de3454ca55e2a3f50df10f0128
MD5 c40eb4d09c89052bc47f396a6d93ff97
BLAKE2b-256 1ec15355ad1bd7c45fd80ddac0a61b32129a19dbe2389d481cde4221ca1c8e6d

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.7-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.7-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 64a5d3ce6fe60f475b740fc390d7a3d0f23c0457a75358f48563a43dc30aea37
MD5 9e0cbd7aa2ef66f1981c6f182ac54cb4
BLAKE2b-256 c219b3eb174f780039a63107bc70d18db047e8af78fd88f3d5553c61ef914978

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4803297f5d87d1c561ac5e3a5971d1259c8242b8da1a73886771882356d6109a
MD5 9bd0297b26e195d9ef5a9b984975ea55
BLAKE2b-256 d5b16640bc77a6501bdd9f2fe16690e1fece246f2a0bd01e56e4deaf456c63b8

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.7-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 100f80bed91f7c85d3fb46ed000e67cb156a78467bf36cb02e5371b0316f21b7
MD5 5c8c5d8a017dbd96b1a605ef301baab5
BLAKE2b-256 ec1cc6702fa8290b50c66675b3bce2112c62944dc0703696fdfaa23c30fb8f5a

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.7-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.7-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 18bdcca380c8b308e2898b1799d3950eb7968622bcc6cec20bce4821ee78b6f6
MD5 1c68960b5fa267865ec7070b41df3b6f
BLAKE2b-256 d8297592e0d299befe682cb4cb4662dbb96ce5df784c52064820da2d3b704278

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.7-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.7-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c701eb20ebfdc7fd868b38f0c3b8ce2d2f31fed4c0ef1f2f14b28e5db71711d3
MD5 5136130e232585fb03bd689898e12197
BLAKE2b-256 d1e21c0bf163b34463233b8490e21eca0413912082a6c0c1ed295606d92e09bc

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.7.7-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.7.7-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c45b576d6a2d2b4d5b63ca98e0cb97c99562a5dffa15459f41e106846d05fd36
MD5 efcd77d7ccb14cbba9587c3588811b61
BLAKE2b-256 ef6495cc92bbfee74b5e4aaae98880f4861cc2bab7336b4ace67e751b6bde20b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page