Skip to main content

Grism redshift and line analysis software

Project description

examples/grizli_logo.png https://github.com/gbrammer/grizli/actions/workflows/python-package.yml/badge.svg https://badge.fury.io/py/grizli.svg https://zenodo.org/badge/DOI/10.5281/zenodo.1146904.svg Documentation Status

Grism redshift & line analysis software for space-based slitless spectroscopy

What is grizli?

This early release of grizli is intended to demonstrate and demystify some general techniques for manipulating HST slitless spectroscopic observations, providing software kernels to address questions such as

“How does the WFC3/IR G141 grism disperse the spectrum of a star/galaxy at pixel position (x,y) in my F140W direct image?”.

Much of the background related to this question in the context of the currently available software tools was discussed in a document by Brammer, Pirzkal and Ryan (2014). Along with a detailed description of the format of the configuration files originally developed for the aXe software, we provided a compact Python script to address exactly the question above and strip away all of the many layers of bookkeeping, file-IO, etc. in existing analysis pipelines such as aXe (Kummel et al. 2009) and “THREEDHST” (Brammer et al. 2012, Momcheva et al. 2015). In fact, that relatively simple script serves as the low-level kernel for the way grizli computes the grism dispersion.

Eventually, grizli is intended to encourage and enable general users to move away from simple “data reduction” (e.g., extracting a 1D spectrum of a single object akin to standard slit spectroscopy) and toward more quantitative and comprehensive modeling and fitting of slitless spectroscopic observations, which typically involve overlapping spectra of hundreds or thousands of objects in exposures taken with one or more separate grisms and at multiple dispersion position angles. The products of this type of analysis will be complete and uniform characterization of the spectral properties (e.g., continuum shape, redshifts, line fluxes) of all objects in a given exposure taken in the slitless spectroscopic mode.

Installation & Documentation

Installation instructions and documentation (in progress) can be found at http://grizli.readthedocs.io.

Working Examples

The following are IPython/jupyter notebooks demonstrating various aspects of the code functionality. They render statically in the GitHub pages or can be run locally after cloning and installing the software repository.

  • Grizli-Pipeline : End-to-end processing of WFC3/IR data.

    1. Query the MAST archive and automatically download files

    2. Image pre-processing (astrometric alignment & background subtraction)

    3. Field contamination modeling

    4. Spectral extractions

    5. Redshift & emission line fits (multiple grisms)

  • Fit-with-Photometry : Demonstrate simultaneous fitting with grism spectra + ancillary photometry

  • NewSpectrumFits: Demonstration of the lower-level fitting tools

    1. Unify the fitting tools between the stacked and exposure-level 2D cutouts (“beams”).

  • Fit-Optimization (09.14.17): Custom fitting (hasn’t been tested recently)

    1. Demonstrate some of the workings behind the fitting wrapper scripts by defining custom model functions with parameters to optimize.

The notebooks below are deprecated and haven’t been tested against the master branch since perhaps late 2017.

  • Grizli Demo: Simple interaction with WFC3/IR spectra

  • Basic-Sim (5.5.16): Basic simulations based on single WFC3/IR grism and direct exposures

  • multimission-simulation (5.11.16):

    1. Demonstration of more advanced simulation techniques using deep image mosaics and external catalogs/segmentation images as reference.

    2. Provide a comparison between dispersed spectra from WFC3/G141, JWST/NIRISS and WFIRST.

  • WFC3IR_Reduction (9.6.16): End-to-end processing of WFC3/IR data.

    1. Pre-processing of files downloaded from MAST (astrometric alignment & background subtraction)

    2. Field contamination modeling

    3. Spectral extractions

    4. Redshift & emission line fits (multiple grisms)

  • NIRISS-simulation (11.11.16): Simulation and analysis of JWST/NIRISS observations

    1. Simulate NIRISS spectra in three blocking filters and two orients offset by 90 degrees.

    2. Simulation field taken from the Hubble WFC3/IR Ultra-Deep Field, with the WFC3 F140W image as the morphological reference and photo-z templates taken as the spectral models.

    3. Extract spectra and fit redshifts and emission lines from the combined six exposures.

Project details


Release history Release notifications | RSS feed

This version

1.8

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

grizli-1.8.tar.gz (7.2 MB view details)

Uploaded Source

Built Distributions

grizli-1.8-cp311-cp311-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

grizli-1.8-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

grizli-1.8-cp311-cp311-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

grizli-1.8-cp310-cp310-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

grizli-1.8-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

grizli-1.8-cp310-cp310-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

grizli-1.8-cp39-cp39-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

grizli-1.8-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

grizli-1.8-cp39-cp39-macosx_10_9_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

grizli-1.8-cp38-cp38-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

grizli-1.8-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

grizli-1.8-cp38-cp38-macosx_10_9_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

grizli-1.8-cp37-cp37m-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

grizli-1.8-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

grizli-1.8-cp37-cp37m-macosx_10_9_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file grizli-1.8.tar.gz.

File metadata

  • Download URL: grizli-1.8.tar.gz
  • Upload date:
  • Size: 7.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for grizli-1.8.tar.gz
Algorithm Hash digest
SHA256 4e5dba8f0c0079b0d015a44bf2c5f14fc3d4ddd38fe326e6719746a8f3dbd99c
MD5 470da51edcd300da2e8128ef088e7c00
BLAKE2b-256 fb6f49c2ea6cc85b9eb6176f9338a44a12d1af1a75f3ac1f2d69b8ed77097e88

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 332e8f0810865b6aad585b2c1a4396fcea9a23195bde9685949cb851c7cbb23f
MD5 6cf95a590cba5fc70e4866105350f5ab
BLAKE2b-256 229466c403e0e3301caf7dc36c15e63535885a5a324c4259ae0658c88b36783a

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b9301fdd6d8807ff79280caf37c4b99fa1b89dc9c9b8fb9bc84222e0caded98
MD5 5adba50099ae43d0eeacd89727bb29b9
BLAKE2b-256 870990ce9b95aa0a31c755c19ff90ea36abb9409f31b78ef36e109ce930ff62c

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 310654f36005ec861a4414f1331f88def8de360426d2ab38767ff732d6af6d09
MD5 22307fea66fab1d2e8c319cacb7f7a71
BLAKE2b-256 f1a011e5381d92fd78b4cdf11be9579cfef2be17b13c95cb027d49ffe26b5d10

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 bc01b31a2c1da18a5bd605f07079227bd8a967586fff8223dd9ce05f95f016f8
MD5 d05ee404e7ab59b3e2aa5a1b63cf7dae
BLAKE2b-256 89e9bbb73c8d680337a6805784d80618d8c3aca15afeb8f4e8923bd9f0c909e9

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6432f9bb26543a5d8673b57991b0aef1d700cd87ae73488ef3c79633415dce5e
MD5 57e74adfcd6174b9c2969c546a8549d8
BLAKE2b-256 26823d96711b449b175a218d32b6b353d468f9d4fc423435223d796484db1865

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e84057a595a823b2c1e096bb2acf05abe2432d34c629ff82f2e5bc981f2be4ec
MD5 678f17e451a8a94222fcba509a9c3633
BLAKE2b-256 31ac886095d3b756dfaceac8f7382a277700182761dd62c51f2366a98a2160cc

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 656219a636df5ecf0c9a8115c34b35da0f057ff6b63d9d68df5140679cd8d9a3
MD5 102f5dbd32c0a756c2f7e2b37e3ac517
BLAKE2b-256 1c81a3f40a456408275de8c4b33e2f09c8320f90c958e98341450b541d7ac6ab

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 74dab9727702fe9a8490103749b2c2419cba0668fd095a5c390c4cabe0fe8b6f
MD5 6c78521c989c5a8b5d95145a8e25ff9e
BLAKE2b-256 514185a02027a40093ee72770b62132a6a3cd22016873d98fca93d11b310a76f

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c8dc650984f528a5fb7752a40b3f2001b35269168f263f70df3045e733ab15ac
MD5 749c48c16e5ef8e070dcaaa36c7b6afb
BLAKE2b-256 b275462d4fe4e75a6644d7d3171bf11cd70faea7dea7172a5c71a981b319e5b4

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e9055b4d4cefe5ab8fc793734f56e1493306934efd2d7e447473f25030dc9615
MD5 9e25510912e1d7125b40dd6e6d95e0c1
BLAKE2b-256 eae19a80a54b51d4ec49a919a6bd52b8a58f01ae7854b7e0e1199b4bd7ed072a

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8ba3b175dc45e3c8ff94c341eed64ee0f7bb128ed8e0526ca23fb25605bcfb0b
MD5 84fe196635d148ec1925092395ce9d11
BLAKE2b-256 e3c057e3e79d70a90a26fb8341f33f4295a2ba7b3f56052b320d81eb70de8456

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d8fd233cccf4c5e466abb727dbc26b6bc7d285583f57ab0bfd0257e2d4fe79f6
MD5 2584770eb326772ebac8306117b5de35
BLAKE2b-256 d8f0880606597843aa83f84e9d4f50ea2f94ee48707eb0584e61d26862d004ed

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7855ebef2c6e1a6e6db6741b23707f0ac75bc60cf10d86a733a6a6dc0597b646
MD5 f461691f91343a0f4a07b0c74e6ed48c
BLAKE2b-256 043995059c740e46edaf6a91ba5cc023dfd5f7000b339d61503a30e3c35ea355

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a8cc3b27a2237f23e9b2a5031964bc1110a5f09456efa58e0fb2032f8072520d
MD5 6babf725996b911e06d8678766d2344c
BLAKE2b-256 526d478d65edac78ff1ad41342adbc9255209ab7fb339c18c5c1d5d07fb0408d

See more details on using hashes here.

Provenance

File details

Details for the file grizli-1.8-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for grizli-1.8-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6f57185bfdcabb614a9c96353275fcf0209fbb48123eb5943c0e2f2834284a2c
MD5 571400dd478f889cbffab44cf1a344e8
BLAKE2b-256 0ec98297ecfdabd7e716fc1c605eba0a9772fbcca4d3e550fee7a83cba572ab7

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page