Skip to main content

grmpy is a Python package for the simulation and estimation of the generalized Roy model.

Project description

grmpy is a Python package for the simulation and estimation of the generalized Roy model.

grmpy

grmpy is an open-source Python package for the simulation and estimation of the generalized Roy model. It serves as a teaching tool to promote the conceptual framework of the generalized Roy model, illustrate a variety of issues in the econometrics of policy evaluation, and showcases basic software engineering practices.
Marginal Treatment Effects (MTE) can be estimated based on a parametric normal model or, alternatively, via the semiparametric method of Local Instrumental Variables (LIV).

You can install grmpy either via pip

$ pip install grmpy

Or download it directly from our GitHub repository and install the package in editable mode

$ git clone https://github.com/OpenSourceEconomics/grmpy.git
$ pip install -e .

Quick Start

Initialization File

grmpy relies on an "initialization.yml" file (referred to as ìnit_file below) to perform both simulation and estimation. For example, check out these two init_files for simulation and parametric estimation as well as a semiparametric estimation setup.

Below you'll find some example code you can copy to jump-start your project.

Simulation

import grmpy

# Specify the initilaization file you want to use, e.g.:
init_file = "ProjectFiles/simulation.yml"

data = grmpy.simulate(init_file)

Estimation

import grmpy

# Specify the initilaization file you want to use, e.g.:
init_file = "ProjectFiles/estimation.yml"

# Parametric Normal Model
rslt = grmpy.fit(init_file, semipar=False)
grmpy.plot_mte(rslt, init_file, color="blue", semipar=False, save_plot="MTE_par.png")

# Local Instrumental Variables (Semiparametric Model)
rslt = grmpy.fit(init_file, semipar=True)
grmpy.plot_mte(rslt, init_file, color="orange", semipar=True, nboot= 250, save_plot="MTE_semipar.png")

Please visit our online documentation for tutorials and more.


docs passing license code style

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

grmpy-0.1.10.tar.gz (566.5 kB view details)

Uploaded Source

Built Distribution

grmpy-0.1.10-py2.py3-none-any.whl (604.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file grmpy-0.1.10.tar.gz.

File metadata

  • Download URL: grmpy-0.1.10.tar.gz
  • Upload date:
  • Size: 566.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for grmpy-0.1.10.tar.gz
Algorithm Hash digest
SHA256 1191990d33272f7bea3870ba0be8a214ff547cf162ad7783e3d54883283aa230
MD5 358749f1fa7437f05b8f8741022035d8
BLAKE2b-256 21d8789b7e943b726476e77ac69556bb98a5d8697f4a7eb9ee8f3cacc8932f3b

See more details on using hashes here.

File details

Details for the file grmpy-0.1.10-py2.py3-none-any.whl.

File metadata

  • Download URL: grmpy-0.1.10-py2.py3-none-any.whl
  • Upload date:
  • Size: 604.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for grmpy-0.1.10-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 ce36773d018c72ecfcef672d0c0fe78b0226f31774994949c2f4f0eed8863bb7
MD5 efb67c5f477abbf7b4d86ad36f269ef4
BLAKE2b-256 0da3ac6fe72afdcc0c7b2e7192be76a0e7d81081cb273ee6b8eb44df8ad9402c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page