Skip to main content

A rhythm feature extractor and classifier for MIDI files

Project description

groover 0.0.6

Installation

groover is a beat-by-beat rhythm feature clustering and token generation tool for .mid files. You can download groover using pip:

pip install groover

To check if groover is successfully installed, type python in the terminal, and do the following:

>>> from groover import RhythmKMeans
>>> type(RhythmKMeans())
<class 'groover.classifier.RhythmKMeans'>

Documentation

data

get_heat_maps(midi_obj, n_bins=24, beat_resolution=480, rid_melody=False, min_pitch=0, max_pitch=127)

Returns a numpy array of shape (n, n_bins), where n is the number of beats in midi_obj. Each row is the rhythmic heat map of a beat, taking into consideration the notes' velocity and pitch.

Parameters
  • midi_obj: miditoolkit.midi.parser.MidiFile
    • the midi object to get heat maps from
  • n_bins: int
    • the number of bins in a beat
  • beat_resolution: int
    • the number of ticks per beat
  • rid_melody: bool
    • whether to ignore melody notes when calculating rhythmic intensity
  • min_pitch: int
    • the minimum pitch of the note to be considered when calculating rhythmic intensity
  • max_pitch: int
    • the maximum pitch of the note to be considered when calculating rhythmic intensity

get_dataset(midi_objs, n_bins=24, beat_resolution=480, rid_melody=False, min_pitch=0, max_pitch=127)

Returns a numpy array of shape (n, n_bins), where n is the total number of beats of midi objects in midi_objs. Each row is the rhythmic heat map of a beat, taking into consideration the notes' velocity and pitch.

Parameters
  • midi_obj: list
    • the list containing midi objects to get heat maps from
  • n_bins: int
    • the number of bins in a beat
  • beat_resolution: int
    • the number of ticks per beat
  • rid_melody: bool
    • whether to ignore melody notes when calculating rhythmic intensity
  • min_pitch: int
    • the minimum pitch of the note to be considered when calculating rhythmic intensity
  • max_pitch: int
    • the maximum pitch of the note to be considered when calculating rhythmic intensity

RhythmKMeans

RhythmKMeans classifies rhythmic heat maps and use them to predict and evaluate rhythmic tokens.

RhythmKMeans.__init__(self, cluster_centers=None)

Parameters
  • cluster_centers: numpy.ndarray
    • the cluster centers in the shape of (k, 24), where k is the number of clusters and each row is a cluster.

RhythmKMeans.load_cluster_centers(self, cluster_centers)

Loads cluster_centers as the classifier's cluster centers.

Parameters
  • cluster_centers: numpy.ndarray
    • the cluster centers in the shape of (k, 24), where k is the number of clusters and each row is a cluster.

RhythmKMeans.fit(self, dataset, k, max_iter=1000, epsilon=1e-6)

Makes the classifier's cluster centers align with the dataset.

Parameters
  • dataset: numpy.ndarray
    • a numpy array of shape (n, 24), where n is the total number of beats in the dataset, with each row being the rhythmic heat map of a beat
  • k: int
    • the number of clusters to be generated
  • max_iter: int
    • the maximum number of iterations to perform
  • epsilon: float
    • if the average distance of the cluster centers between iterations is lower than epsilon, clustering ends early

RhythmKMeans.k(self)

Returns the number of clusters of the classifier.

RhythmKMeans.is_empty(self)

Returns True if the classifier is not fitted to any data yet, False otherwise.

RhythmKMeans.add_beat_clusters(self, midi_obj, beat_resolution=480, preprocessing='default', min_pitch=0, max_pitch=127)

Adds markers with rhythm types to midi_obj.

Parameters
  • midi_obj: miditoolkit.midi.parser.MidiFile
    • the midi object to add beat-by-beat rhythm markers to
  • beat_resolution: int
    • the number of ticks per beat
  • preprocessing: str
    • can be either 'default', 'binary', or 'quantized', which will then change the rhythmic heat maps' values accordingly
  • min_pitch: int
    • the minimum pitch of the note to be considered when calculating rhythmic intensity
  • max_pitch: int
    • the maximum pitch of the note to be considered when calculating rhythmic intensity

RhythmKMeans.get_rhythm_scores(self, midi_obj, beat_resolution=480, min_pitch=0, max_pitch=127)

Returns a tuple of numpy arrays. The first is the rhythm types in shape (n,) that is specified by the markers in the midi object, and the second array is the alignment score between the notes and the rhythm type in shape (n,). n is the number of beats in the midi object.

Parameters
  • midi_obj: miditoolkit.midi.parser.MidiFile
    • the midi object to be evaluated
  • beat_resolution: int
    • the number of ticks per beat
  • preprocessing: str
    • can be either 'default', 'binary', or 'quantized', which will then change the rhythmic heat maps' values accordingly
  • min_pitch: int
    • the minimum pitch of the note to be considered when calculating rhythmic intensity
  • max_pitch: int
    • the maximum pitch of the note to be considered when calculating rhythmic intensity

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

groover-0.0.6.tar.gz (7.6 kB view details)

Uploaded Source

Built Distribution

groover-0.0.6-py3-none-any.whl (7.9 kB view details)

Uploaded Python 3

File details

Details for the file groover-0.0.6.tar.gz.

File metadata

  • Download URL: groover-0.0.6.tar.gz
  • Upload date:
  • Size: 7.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for groover-0.0.6.tar.gz
Algorithm Hash digest
SHA256 b3e65f344d73fcb14a68c2a0434e034fe81d42c3570a9190fd253ba379b25100
MD5 42be96cadbbd36c64591ef1764a77042
BLAKE2b-256 b3ebb88c26300f0e9653464f4677e5a5659d51c9168f92042b1034226c345538

See more details on using hashes here.

File details

Details for the file groover-0.0.6-py3-none-any.whl.

File metadata

  • Download URL: groover-0.0.6-py3-none-any.whl
  • Upload date:
  • Size: 7.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for groover-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 22277fb40de4216039c47af606ab04a843bb64e9b1a8892b389efd7b95af170e
MD5 3ce7d47d112fe5974353f37595a579ae
BLAKE2b-256 eb150f03778b51240531cff323188dbe76632a9c194e117c3b93c0ef0a4756b9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page