Skip to main content

A Python package for evaluating LLM application outputs.

Project description

GroundedAI

Overview

The grounded-ai package is a powerful tool developed by GroundedAI to evaluate the performance of large language models (LLMs) and their applications. It leverages our own fine tuned small language models and metric specific adapters to compute various metrics, providing insights into the quality and reliability of LLM outputs. Our models can be found here: https://huggingface.co/grounded-ai

Features

  • Metric Evaluation: Compute a wide range of metrics to assess the performance of LLM outputs, including:

    • Factual accuracy
    • Relevance to the given context
    • Potential biases or toxicity
    • Hallucination
  • Small Language Model Integration: Utilize state-of-the-art small language models, optimized for efficient evaluation tasks, to analyze LLM outputs accurately and quickly.

  • Adapter Support: Leverage GroundedAI's proprietary adapters, such as the phi3-toxicity-judge adapter, to fine-tune the small language models for specific domains, tasks, or evaluation criteria, ensuring tailored and precise assessments.

  • Flexible Input/Output Handling: Accept LLM outputs in various formats (text, JSON, etc.) and provide evaluation results in a structured and easily consumable manner.

Getting Started

Install the grounded-ai package from PyPI:

pip install grounded-ai==0.0.9-alpha

Example Usage: Toxicity Evaluation

The ToxicityEvaluator class is used to evaluate the toxicity of a given text. Here's an example of how to use it:

from grounded_ai.evaluators.toxicity_evaluator import ToxicityEvaluator

toxicity_evaluator = ToxicityEvaluator(quantization=True)
toxicity_evaluator.warmup()
data = [
    "That guy is so stupid and ugly",
    "Bunnies are the cutest animals in the world"
]
response = toxicity_evaluator.evaluate(data)
# Output
# {'toxic': 1, 'non-toxic': 1, 'percentage_toxic': 50.0}

In this example, we initialize the ToxicityEvaluator. The quantization parameter is optionally set to True to enable quantization for faster inference with less memory.

We then load the base model and the GroundedAI adapter using the warmup() method.

Next, we define a list of texts (data) that we want to evaluate for toxicity.

Finally, we call the evaluate method with the data list, and it returns a dictionary containing the number of toxic and non-toxic texts, as well as the percentage of toxic texts.

In the output, we can see that out of the two texts, one is classified as toxic, and the other as non-toxic, resulting in a 50% toxicity percentage.

Documentation

Detailed documentation, including API references, examples, and guides, coming soon at https://groundedai.tech/api.

Contributing

We welcome contributions from the community! If you encounter any issues or have suggestions for improvements, please open an issue or submit a pull request on the GroundedAI grounded-eval GitHub repository.

License

The grounded-ai package is released under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

grounded_ai-1.0.3.tar.gz (9.5 kB view details)

Uploaded Source

Built Distribution

grounded_ai-1.0.3-py3-none-any.whl (10.3 kB view details)

Uploaded Python 3

File details

Details for the file grounded_ai-1.0.3.tar.gz.

File metadata

  • Download URL: grounded_ai-1.0.3.tar.gz
  • Upload date:
  • Size: 9.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.5

File hashes

Hashes for grounded_ai-1.0.3.tar.gz
Algorithm Hash digest
SHA256 09bcc9e07ac734939466b28732609cb70d679e2d2546ad2b999b27c722d9ec1a
MD5 f348f0acf24b3b3c51490e8fd5cbe4eb
BLAKE2b-256 68a7df32d9da9226895162f357c71541d449674e7a59a0e504adf3b9aa849d04

See more details on using hashes here.

File details

Details for the file grounded_ai-1.0.3-py3-none-any.whl.

File metadata

  • Download URL: grounded_ai-1.0.3-py3-none-any.whl
  • Upload date:
  • Size: 10.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.5

File hashes

Hashes for grounded_ai-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 03c9243d79007d91498ffe32a96a023d775069685b8850f98f44922cf8c38a97
MD5 ac3f0a4acfa310e9c51a1378f49008e8
BLAKE2b-256 6ad8d8f2fd3f923088b1fb91f1104a2ae0e4bef5caed9e22f758a542fd4c9328

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page