A small toolset to implement load balancing for gRPC services
Project description
gRPC Load Balancer
grpc_load_balancer
is a Python package that allows you to easily configure and manage separate gRPC server and client instances using a metrics-based load balancing approach. This is useful when you have multiple services running and want to distribute the load efficiently among them. The package includes a connection forwarder, a metrics-based server finder, and a configuration loader.
It implemetns the following design:
Features
- Forward connections from clients to gRPC servers.
- Use Prometheus metrics to select the best server to handle a request.
- Configure and manage gRPC server finder using environment variables.
Installation
You can install grpc_load_balancer
using pip:
pip install grpc_load_balancer
Install promethus-client:
pip install prometheus-client
Usage
Configuring and running a gRPC server
Here's a simple example of how to use grpc_load_balancer with a gRPC server and prometeus-client:
Import the required modules:
import grpc
from grpc_load_balancer import GrpcConnnectionForwarder
from prometheus_client import start_http_server, Gauge
Initialize your gRPC server(s)
grpc_server = create_example_grpc_server() # implement this function yourself
connection_counter = Gauge('connections_num', 'Number of connections forwarded')
forwarder = GrpcConnnectionForwarder(
grpc_server, callback=lambda value: connection_counter.set(value)
)
start_http_server(prometheus_port)
# forwarder_port - port to listen connections from gRPC clients
# Note this call is blocking
forwarder.serve(host="0.0.0.0", port=forwarder_port)
# If you want to run the server in a separate thread, and want to stop it later, use the forwarder.stop() method
Configuring and running a gRPC client
Import the required modules:
import grpc
from grpc_load_balancer import EnvConfigLoader, MetricsBasedServerFinder
Initialize the configuration loader
# This is example how your environment variables can look like
# os.environ['LB_METRICS_NAME'] = 'connections_num'
# os.environ['LB_HOST1_HOST'] = 'localhost'
# os.environ['LB_HOST1_PORT'] = '20000'
# os.environ['LB_HOST1_METRICS_PORT'] = '20001'
# os.environ['LB_HOST2_HOST'] = 'localhost'
# os.environ['LB_HOST2_PORT'] = '30000'
# os.environ['LB_HOST2_METRICS_PORT'] = '30001'
env_config_loader = EnvConfigLoader(prefix="LB")
Initialize the server finder, find the best server and connect to it
metrics_based_server_finder = env_config_loader.init_metrics_based_server_finder()
best_host = metrics_based_server_finder.fetch_metrics()
channel = grpc.insecure_channel(f"{best_host[0]}:{best_host[1]}")
client = create_example_grpc_client(channel) # implement this function yourself
# Use the client to send requests to the server
Troubleshooting
If you have any problems with grpc_load_balancer
, please open an issue on GitHub.
Also, you can check tests/test_grpc_load_balancer.py for more information.
Contributing
We welcome contributions to grpc_load_balancer
. If you find a bug or want to propose a new feature, please open a GitHub issue or submit a pull request.
License
This project is licensed under the MIT License. See LICENSE for details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file grpc_load_balancer-0.0.3.tar.gz
.
File metadata
- Download URL: grpc_load_balancer-0.0.3.tar.gz
- Upload date:
- Size: 7.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9e29c29c17aaa08cba7cc297c18119525eaa1cfa802c1d03a1e2f31c2b3e90be |
|
MD5 | f87b6311d4aee6e3de315b038588d05d |
|
BLAKE2b-256 | c9404e7f5cfc8c5e03b63dd1e95cf42e95719ad0064a9b7578dce20886a8037f |
File details
Details for the file grpc_load_balancer-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: grpc_load_balancer-0.0.3-py3-none-any.whl
- Upload date:
- Size: 7.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f590c013cff44ddd2cd57d731f66706f7b4df27f82a6e0cdf2ccf3d0ab1d686e |
|
MD5 | ca49bfef4b1eb233684a48f983699cdb |
|
BLAKE2b-256 | 73ca3774e30dd6c932f52463bae648443315e13201a2462404e3d4d6ee17f903 |