Skip to main content

A ridiculously simple search engine factory

Project description

grub

A ridiculously simple search engine

Example: Search code

from grub import SearchStore
import sklearn  # instead of talking any file, let's search the files of sklearn itself!

path_format = os.path.dirname(sklearn.__file__) + '{}.py'
search = SearchStore(path_format)

Let's search for ANN. That stands for Artificial Neural Networks. Did you know? Well search figures it out, pretty early, that I was talking about neural networks.

search('ANN')  
array(['sklearn/tree/_export.py', 'sklearn/linear_model/_least_angle.py',
       'sklearn/feature_selection/_base.py',
       'sklearn/feature_selection/tests/test_variance_threshold.py',
       'sklearn/neural_network/tests/test_stochastic_optimizers.py',
       'sklearn/neural_network/__init__.py',
       'sklearn/neural_network/_stochastic_optimizers.py',
       'sklearn/neural_network/_multilayer_perceptron.py',
       'sklearn/neural_network/rbm.py',
       'sklearn/neural_network/tests/test_rbm.py'], dtype='<U75')

Let's search for something more complicated. Like a sentence. The results show promise promises: It's about calibration, but related are robustness, feature selection and validation...

search('how to calibrate the estimates of my classifier')  
array(['sklearn/covariance/_robust_covariance.py',
       'sklearn/svm/_classes.py',
       'sklearn/covariance/_elliptic_envelope.py',
       'sklearn/neighbors/_lof.py', 'sklearn/ensemble/_iforest.py',
       'sklearn/feature_selection/_rfe.py', 'sklearn/calibration.py',
       'sklearn/model_selection/_validation.py',
       'sklearn/ensemble/_forest.py', 'sklearn/ensemble/_gb.py'],
      dtype='<U75')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

grub-0.1.3.tar.gz (189.1 kB view details)

Uploaded Source

Built Distribution

grub-0.1.3-py3-none-any.whl (14.6 kB view details)

Uploaded Python 3

File details

Details for the file grub-0.1.3.tar.gz.

File metadata

  • Download URL: grub-0.1.3.tar.gz
  • Upload date:
  • Size: 189.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.28.0 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.6

File hashes

Hashes for grub-0.1.3.tar.gz
Algorithm Hash digest
SHA256 2b1ad836e0e6a48309f46f557eec03302f27f7ba547e1e343f297c125d0b0289
MD5 f78b0952787b359f01dd94fdbddbdaa7
BLAKE2b-256 f07e36b6fe3aa017d9261107769a8f2c7dba4d102310a2e3080bcacfac7d4bd5

See more details on using hashes here.

File details

Details for the file grub-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: grub-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 14.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.28.0 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.62.3 importlib-metadata/4.11.0 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.6

File hashes

Hashes for grub-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 e0c89b96f3f9a10b647aebc6feece6b0c120ceded1c9473c28efc51856b49e3c
MD5 5bd8aaada22e365eb87f4291eda55a0e
BLAKE2b-256 7b35fc158726c4562b532d0024d2eeedf7d4f5a8d527f1cfa824197eab2bfeb8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page