Skip to main content
Join the official 2020 Python Developers SurveyStart the survey!

A ridiculously simple search engine

Project description

grub

A ridiculously simple search engine

Example: Search code

from grub import SearchStore
import sklearn  # instead of talking any file, let's search the files of sklearn itself!

path_format = os.path.dirname(sklearn.__file__) + '{}.py'
search = SearchStore(path_format)

Let's search for ANN. That stands for Artificial Neural Networks. Did you know? Well search figures it out, pretty early, that I was talking about neural networks.

search('ANN')  
array(['sklearn/tree/_export.py', 'sklearn/linear_model/_least_angle.py',
       'sklearn/feature_selection/_base.py',
       'sklearn/feature_selection/tests/test_variance_threshold.py',
       'sklearn/neural_network/tests/test_stochastic_optimizers.py',
       'sklearn/neural_network/__init__.py',
       'sklearn/neural_network/_stochastic_optimizers.py',
       'sklearn/neural_network/_multilayer_perceptron.py',
       'sklearn/neural_network/rbm.py',
       'sklearn/neural_network/tests/test_rbm.py'], dtype='<U75')

Let's search for something more complicated. Like a sentence. The results show promise promises: It's about calibration, but related are robustness, feature selection and validation...

search('how to calibrate the estimates of my classifier')  
array(['sklearn/covariance/_robust_covariance.py',
       'sklearn/svm/_classes.py',
       'sklearn/covariance/_elliptic_envelope.py',
       'sklearn/neighbors/_lof.py', 'sklearn/ensemble/_iforest.py',
       'sklearn/feature_selection/_rfe.py', 'sklearn/calibration.py',
       'sklearn/model_selection/_validation.py',
       'sklearn/ensemble/_forest.py', 'sklearn/ensemble/_gb.py'],
      dtype='<U75')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for grub, version 0.0.6
Filename, size File type Python version Upload date Hashes
Filename, size grub-0.0.6-py3-none-any.whl (4.6 kB) File type Wheel Python version py3 Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page