A ridiculously simple search engine
Project description
grub
A ridiculously simple search engine
Example: Search code
from grub import SearchStore
import sklearn # instead of talking any file, let's search the files of sklearn itself!
path_format = os.path.dirname(sklearn.__file__) + '{}.py'
search = SearchStore(path_format)
search('ANN') # see that it guessed, pretty early, that I was talking about neural networks
array(['sklearn/tree/_export.py', 'sklearn/linear_model/_least_angle.py',
'sklearn/feature_selection/_base.py',
'sklearn/feature_selection/tests/test_variance_threshold.py',
'sklearn/neural_network/tests/test_stochastic_optimizers.py',
'sklearn/neural_network/__init__.py',
'sklearn/neural_network/_stochastic_optimizers.py',
'sklearn/neural_network/_multilayer_perceptron.py',
'sklearn/neural_network/rbm.py',
'sklearn/neural_network/tests/test_rbm.py'], dtype='<U75')
search('how to calibrate the estimates of my classifier') # and yep... good keyword promisses: robust, calibration, feature selection and validation...
array(['sklearn/covariance/_robust_covariance.py',
'sklearn/svm/_classes.py',
'sklearn/covariance/_elliptic_envelope.py',
'sklearn/neighbors/_lof.py', 'sklearn/ensemble/_iforest.py',
'sklearn/feature_selection/_rfe.py', 'sklearn/calibration.py',
'sklearn/model_selection/_validation.py',
'sklearn/ensemble/_forest.py', 'sklearn/ensemble/_gb.py'],
dtype='<U75')
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
grub-0.0.3.tar.gz
(3.4 kB
view hashes)
Built Distribution
grub-0.0.3-py3-none-any.whl
(3.2 kB
view hashes)