Generative Sparse Distributed Representations, a fast generative model
Project description
gsdr
Generative Sparse Distributed Representations, a fast generative model written in Python (Original C++ implementation https://github.com/222464/GSDR)
Dependencies
Python 3
Python libraries
numpy
Installation
pip install gsdr or clone and python setup.py install
Usage
(More extensive examples and IPython notebooks can be found in examples/)
With labeled data:
data, labels = ...
num_labels = 10
# Data: (batches, num_features)
# Labels: (batches,) (contains numbers from 0 to num_labels-1, eg. 10 for MNIST)
# Build the GSDR network (only one layer for now)
gsdr = GSDRStack()
gsdr.add(input_count=data.shape[1], hidden_count=256, sparsity=0.1, forced_latent_count=num_labels)
forced_latents = np.eye(num_labels)
# Train once for each data point
for i in range(data.shape[0]):
gsdr.train(data[i], forced_latents={0: forced_latents[labels[i]]})
# Generate one example for each label
for i in range(num_labels):
generated = gsdr.generate(forced_latents={0: forced_latents[i]})
With unlabeled data:
data = ...
# Data: (batches, num_features)
# Build the GSDR network (only one layer for now)
gsdr = GSDRStack()
gsdr.add(input_count=data.shape[1], hidden_count=256, sparsity=0.1)
# Train once for each data point
for i in range(data.shape[0]):
gsdr.train(data[i])
states = np.eye(hidden_count)
# Generate one example for each one-hot state
for i in range(hidden_count):
generated = gsdr.generate(states[i])
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
gsdr-0.1.1.zip
(2.5 kB
view details)
File details
Details for the file gsdr-0.1.1.zip
.
File metadata
- Download URL: gsdr-0.1.1.zip
- Upload date:
- Size: 2.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 172750cc3ad23db1f40a6aa3fc121f208af5053a9649c392d380e40a1f4998df |
|
MD5 | 1475966985631b5a7c50b837d47c385e |
|
BLAKE2b-256 | 3f85b7b0b71c19459ceb4714c70c7d90cd21a1d61abd10e815404970835feba2 |