Skip to main content

Gene Set Enrichment Analysis in Python

Project description

GSEApy: Gene Set Enrichment Analysis in Python.

https://badge.fury.io/py/gseapy.svg https://img.shields.io/conda/vn/bioconda/GSEApy.svg?style=plastic https://anaconda.org/bioconda/gseapy/badges/downloads.svg Action Status Documentation Status https://img.shields.io/badge/license-MIT-blue.svg PyPI - Python Version

Release notes : https://github.com/zqfang/GSEApy/releases

Tutorial for scRNA-seq datasets

Tutorial for general usage

Citation

Zhuoqing Fang, Xinyuan Liu, Gary Peltz, GSEApy: a comprehensive package for performing gene set enrichment analysis in Python,
Bioinformatics, 2022;, btac757, https://doi.org/10.1093/bioinformatics/btac757

GSEApy is a Python/Rust implementation for GSEA and wrapper for Enrichr.

GSEApy can be used for RNA-seq, ChIP-seq, Microarray data. It can be used for convenient GO enrichment and to produce publication quality figures in python.

GSEApy has 7 sub-commands available: gsea, prerank, ssgsea, gsva, replot enrichr, biomart.

gsea:

The gsea module produces GSEA results. The input requries a txt file(FPKM, Expected Counts, TPM, et.al), a cls file, and gene_sets file in gmt format.

prerank:

The prerank module produces Prerank tool results. The input expects a pre-ranked gene list dataset with correlation values, provided in .rnk format, and gene_sets file in gmt format. prerank module is an API to GSEA pre-rank tools.

ssgsea:

The ssgsea module performs single sample GSEA(ssGSEA) analysis. The input expects a pd.Series (indexed by gene name), or a pd.DataFrame (include GCT file) with expression values and a GMT file. For multiple sample input, ssGSEA reconigzes gct format, too. ssGSEA enrichment score for the gene set is described by D. Barbie et al 2009.

gsva:

The gsva module performs GSVA method by Hänzelmann et al. The input is same to ssgsea.

replot:

The replot module reproduce GSEA desktop version results. The only input for GSEApy is the location to GSEA Desktop output results.

enrichr:

The enrichr module enable you perform gene set enrichment analysis using Enrichr API. Enrichr is open source and freely available online at: http://amp.pharm.mssm.edu/Enrichr . It runs very fast.

biomart:

The biomart module helps you convert gene ids using BioMart API.

Please use ‘gseapy COMMAND -h’ to see the detail description for each option of each module.

The full GSEA is far too extensive to describe here; see GSEA documentation for more information. All files’ formats for GSEApy are identical to GSEA desktop version.

Why GSEApy

I would like to use Pandas to explore my data, but I did not find a convenient tool to do gene set enrichment analysis in python. So, here are my reasons:

  • Ability to run inside python interactive console without having to switch to R!!!

  • User friendly for both wet and dry lab users.

  • Produce or reproduce publishable figures.

  • Perform batch jobs easy.

  • Easy to use in bash shell or your data analysis workflow, e.g. snakemake.

GSEApy vs GSEA(Broad) output

Using the same data for GSEAPreranked, and GSEApy reproduce similar results.

docs/Preank.py.vs.broad.jpg

See more output here: Example

Installation

Install gseapy package from bioconda or pip.
# if you have conda (MacOS_x86-64 and Linux only)
$ conda install -c bioconda gseapy
# Windows and MacOS_ARM64(M1/2-Chip)
$ pip install gseapy
If pip install failed, use
# you need to install rust first to compile the code
curl https://sh.rustup.rs -sSf | sh -s -- -y
# export rust compiler
export PATH="$PATH:$HOME/.cargo/bin"
# install
$ pip install git+git://github.com/zqfang/gseapy.git#egg=gseapy

Dependency

  • Python 3.7+

Mandatory

  • build
    • Rust: For gseapy > 0.11.0, Rust compiler is needed

    • setuptools-rust

  • run
    • Numpy >= 1.13.0

    • Scipy

    • Pandas

    • Matplotlib

    • Requests

Run GSEApy

For command line usage:

# An example to reproduce figures using replot module.
$ gseapy replot -i ./Gsea.reports -o test


# An example to run GSEA using gseapy gsea module
$ gseapy gsea -d exptable.txt -c test.cls -g gene_sets.gmt -o test

# An example to run Prerank using gseapy prerank module
$ gseapy prerank -r gsea_data.rnk -g gene_sets.gmt -o test

# An example to run ssGSEA using gseapy ssgsea module
$ gseapy ssgsea -d expression.txt -g gene_sets.gmt -o test

# An example to run GSVA using gseapy ssgsea module
$ gseapy gsva -d expression.txt -g gene_sets.gmt -o test

# An example to use enrichr api
# see details for -g input -> ``get_library_name``
$ gseapy enrichr -i gene_list.txt -g KEGG_2016 -o test

Run gseapy inside python console:

  1. Prepare expression.txt, gene_sets.gmt and test.cls required by GSEA, you could do this

import gseapy

# run GSEA.
gseapy.gsea(data='expression.txt', gene_sets='gene_sets.gmt', cls='test.cls', outdir='test')

# run prerank
gseapy.prerank(rnk='gsea_data.rnk', gene_sets='gene_sets.gmt', outdir='test')

# run ssGSEA
gseapy.ssgsea(data="expression.txt", gene_sets= "gene_sets.gmt", outdir='test')

# run GSVA
gseapy.gsva(data="expression.txt", gene_sets= "gene_sets.gmt", outdir='test')

# An example to reproduce figures using replot module.
gseapy.replot(indir='./Gsea.reports', outdir='test')
  1. If you prefer to use Dataframe, dict, list in interactive python console, you could do this.

see detail here: Example

# assign dataframe, and use enrichr library data set 'KEGG_2016'
expression_dataframe = pd.DataFrame()

sample_name = ['A','A','A','B','B','B'] # always only two group,any names you like

# assign gene_sets parameter with enrichr library name or gmt file on your local computer.
gseapy.gsea(data=expression_dataframe, gene_sets='KEGG_2016', cls= sample_names, outdir='test')

# prerank tool
gene_ranked_dataframe = pd.DataFrame()
gseapy.prerank(rnk=gene_ranked_dataframe, gene_sets='KEGG_2016', outdir='test')

# ssGSEA
gseapy.ssgsea(data=expression_dataframe, gene_sets='KEGG_2016', outdir='test')

# gsva
gseapy.gsva(data=expression_dataframe, gene_sets='KEGG_2016', outdir='test')
  1. For enrichr , you could assign a list, pd.Series, pd.DataFrame object, or a txt file (should be one gene name per row.)

# assign a list object to enrichr
gl = ['SCARA3', 'LOC100044683', 'CMBL', 'CLIC6', 'IL13RA1', 'TACSTD2', 'DKKL1', 'CSF1',
     'SYNPO2L', 'TINAGL1', 'PTX3', 'BGN', 'HERC1', 'EFNA1', 'CIB2', 'PMP22', 'TMEM173']

gseapy.enrichr(gene_list=gl, gene_sets='KEGG_2016', outdir='test')

# or a txt file path.
gseapy.enrichr(gene_list='gene_list.txt', gene_sets='KEGG_2016',
               outdir='test', cutoff=0.05, format='png' )

GSEApy supported gene set libaries :

To see the full list of gseapy supported gene set libraries, please click here: Library

Or use get_library_name function inside python console.

 #see full list of latest enrichr library names, which will pass to -g parameter:
 names = gseapy.get_library_name()

 # show top 20 entries.
 print(names[:20])


['Genome_Browser_PWMs',
'TRANSFAC_and_JASPAR_PWMs',
'ChEA_2013',
'Drug_Perturbations_from_GEO_2014',
'ENCODE_TF_ChIP-seq_2014',
'BioCarta_2013',
'Reactome_2013',
'WikiPathways_2013',
'Disease_Signatures_from_GEO_up_2014',
'KEGG_2016',
'TF-LOF_Expression_from_GEO',
'TargetScan_microRNA',
'PPI_Hub_Proteins',
'GO_Molecular_Function_2015',
'GeneSigDB',
'Chromosome_Location',
'Human_Gene_Atlas',
'Mouse_Gene_Atlas',
'GO_Cellular_Component_2015',
'GO_Biological_Process_2015',
'Human_Phenotype_Ontology',]

Dev

# test rust extension only
cargo test --features=extension-module
# test whole package
python setup.py test

Bug Report

If you would like to report any bugs when use gseapy, don’t hesitate to create an issue on github here.

To get help of GSEApy

  1. See Frequently Asked Questions

  2. Visit the document site at Examples

  3. The GSEApy discussion channel: Q&A

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gseapy-1.1.4.tar.gz (108.0 kB view details)

Uploaded Source

Built Distributions

gseapy-1.1.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (548.4 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

gseapy-1.1.4-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (570.1 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

gseapy-1.1.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (530.5 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

gseapy-1.1.4-cp313-cp313-macosx_11_0_arm64.whl (481.5 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

gseapy-1.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (548.4 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

gseapy-1.1.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (570.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

gseapy-1.1.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (530.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

gseapy-1.1.4-cp312-cp312-macosx_11_0_arm64.whl (481.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

gseapy-1.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (548.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

gseapy-1.1.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (570.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

gseapy-1.1.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (530.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

gseapy-1.1.4-cp311-cp311-macosx_11_0_arm64.whl (481.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

gseapy-1.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (548.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

gseapy-1.1.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (570.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

gseapy-1.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (530.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

gseapy-1.1.4-cp310-cp310-macosx_11_0_arm64.whl (481.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

gseapy-1.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (548.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

gseapy-1.1.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (570.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

gseapy-1.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (530.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

gseapy-1.1.4-cp39-cp39-macosx_11_0_arm64.whl (481.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

gseapy-1.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (549.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

gseapy-1.1.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (570.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

gseapy-1.1.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (530.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

gseapy-1.1.4-cp38-cp38-macosx_11_0_arm64.whl (481.8 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

gseapy-1.1.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (549.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

gseapy-1.1.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (570.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

gseapy-1.1.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (530.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

File details

Details for the file gseapy-1.1.4.tar.gz.

File metadata

  • Download URL: gseapy-1.1.4.tar.gz
  • Upload date:
  • Size: 108.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for gseapy-1.1.4.tar.gz
Algorithm Hash digest
SHA256 7e858752d7684b1abed124c585f3ca2f156ff22985575234232a54c57b88ba66
MD5 96bfceba6c35a878b16f3f7059aad147
BLAKE2b-256 12920a4e24f4a0ac772e8ec652f299a89292eb66d67e329579e1ea48cc006250

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e077bc4a24099868d3fd18cc42e1a87ed00059ae71f08c2f0733429b54325f4b
MD5 ab34d4704772f16067c56571f6a01300
BLAKE2b-256 ee9baf152f24b0fea36f43428f6720baf32e9f3ebbdd866b77a50f672cf13e19

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 21463527b284ef5f1a21725257ac146fcdfdc6f400bc6bba2eb3704c61bce1b8
MD5 ac61f2a8107ca7d365cede2d3d1e6119
BLAKE2b-256 b8d65497f762fcb16906f71395bb0aee9fe98289213c1869606bdedad9a3d6c0

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 664ca318bcae24858693aad62066ed95917d549aa3bf60f63d811d2006f2b404
MD5 4af17cc9d5ec4fa3df36be920b43ea0d
BLAKE2b-256 f3e54761d521b93e8c13ed963da8b97a9dfd58e49d8ea893afc115370dd3bf3a

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 87544c16c9cafe02a8a8e8e6cef4b4e612fc9b6da18f143b9b5e0e2c3f7808e2
MD5 56cc43bf0c540dd37d35deca7307038c
BLAKE2b-256 c8a0f11b5c25710857f1c341325be5ec93d8651f1dd7627e92572ee7fc520db8

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 597f18ef42f266b22ed3ad966b2506e08820f4fb6d7d1d9c9024a1ac6db69532
MD5 f76c934e1a3a1774663c14a555d4ffd8
BLAKE2b-256 0eb9fd83b9b5d9d90d12807d77f96d83bd34f50230725e012fdc309e334c1e30

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a3c70778b37f6b1a6e81c37851025e56b16d399a955133c5ae00205f2f99769e
MD5 2a25137467f3f84cdad52cef2b7e299f
BLAKE2b-256 da9c18849b086328382fea86623b3361cd656479818ecbcaf81a75a506d9e213

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dc9d98dfe1eeb3c6b66a025f7beb92feb0a26475ea23f5a76a23e511deef0992
MD5 4c41ff2916820b9b376f666f8730c8a3
BLAKE2b-256 b3ff983b3039b4b05fc65dd5b8a5f2514c4f275fd106b3783d14e838d0158379

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 edc141a3f71efb3c1cd865dff7f9dfe1891dacbde43c614363ff1fc0df9fb442
MD5 7c83db88fe8c6205591622450895fccc
BLAKE2b-256 bae42ed59edeeb9f27fd8fdc0a62ad198e435ba27483f866ef12c8fd8363265f

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7ad94129f62899d542f2d2cbe88381233c52997bd0c9086ddf5903af9a439ed
MD5 d6554ea45585a8988d7977abaff4a700
BLAKE2b-256 3dc8249062e2abc688aa1c5d839d21079e82e3949055b6014e4cd758ab01fe64

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a71f21bf1bb789a81badb83150f10395d90dacf1a451c146dd59dc36e412c8d5
MD5 5bd5e3333d50f67ebc5f2f6bdd2908f6
BLAKE2b-256 2947abcc4505aba4c43b26f9933f577c1899f73148b60db464206addafa26c2e

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5f621149cea81116d17789ab551f14863b66449d1a874c0b33b6315b38b16a45
MD5 d66e607f1c0cd8ca8117e39a160e35f4
BLAKE2b-256 0338e372949c85b5b07e5afd1c3c3be36b354ba96ea4a4b263fb7cb76903cba2

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fef1ea93db8aa09e7a4b1b3102d52c325a7441795000916b3c3a80639768d4d3
MD5 6425f86b0528d5399a107c42cb533ba5
BLAKE2b-256 4b02f2b133a75aa0c5935bdc7fa4fc0ad1689acbdf2a8297bfaff30d974de81d

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 15d92ada8a1370a2283c6f67228a91a5ae1646bab5c94c80c49cf49c7a76dde7
MD5 31068472d4fc5e259bae00532c1fef9f
BLAKE2b-256 f9abb03c0dca8a4eca983d33c9b15d6e203f223eccdb06f96f335a6e7df2a2a9

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f6398ad7d80e11cd9c665117edc9966f8d9ec18809b2a4d6d35161a17f4ac79c
MD5 351dbe21f8b81688456ad56eea527506
BLAKE2b-256 4c446c91a07f45373bff1de11d22ef2affaeabf894c188b3d3b38d201debee4a

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79b8b71962386f8b9fc530f1af1313d781a5b5e6632df301b79685187ce5c3c0
MD5 fe362ee43a1d76c5302f104ad5d1fcd0
BLAKE2b-256 8bdaad5a81542120f7132a68985840037f1747a9ba4297644633afdfa9c32dc2

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e0b425d60be0689100174ae1b6975c2471935c6bec3f812e02909517ead73c3a
MD5 8726d287855cffbd356d746c02f1365e
BLAKE2b-256 681517667c194aea86482ce4747a7ca6a9438cd99602aba3f3f1d09a65d202a9

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9328ee3943806652bdabb4d45382b7df83c7b5135b79887a34c19368ed091b06
MD5 1eb03801899c0a217bf47cbb55493397
BLAKE2b-256 a8ee0573f0a9797fae5254ee64ced449703e3b75c80b48099242c5712e13bb5a

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d94345a1e18fcbd0a6b792f415183b3176bf0d3b4ddda76de5656d42903cf194
MD5 aa772ec173d7537f1932f956289696bb
BLAKE2b-256 a4da7c6565abd284bdf9ebf043718b7ac01d9567b78d3a1561cef216e57d41f3

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6fb3963cfbbbaf0a0183bdfcd41e418acb12f7a82926d046976b43906121e2fb
MD5 3a1e5992a5c390e9fb11760120d3d5ff
BLAKE2b-256 61fe85781809d543d731b532261a81d5796699df74a4e1dce41c1974a76e541b

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6064b816b034521b5de03f9e1ccf947d795b5d7df67c677d14cbecdbe8fcc6dc
MD5 757953ebb96c24298d40208601ef8522
BLAKE2b-256 773bff3bca6839a7d08521572e43c50b09668e1d7304bbb2d6c6f675fc67a62c

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 864c4fb6ed993911d5ccc9be868968f4841b11a80b27c802dcf1e6a15a8c50c9
MD5 8a16ac619f7fc369fa8467b4bc4b28e1
BLAKE2b-256 5e27f9321746ff2c99cd2bcbbccc01406a18b2a561dfc510df1b57e625557f2b

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 65dffefb9ccaf1a77f27b0dd688f0345af3bf9304e2c456b93ff4880aa7855c9
MD5 1a887bb2cbb3c529050f55f8eddd753c
BLAKE2b-256 f7a9b0d94f44c8bfce412392973bcf7ad6230b5aee2afebba320c4d79fe01d2e

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1f1d6dfccd7e0cf09fb72e319af791da0964048f0b04f912b6af29efd3989328
MD5 ce1f3a815517735d330380e42b94951c
BLAKE2b-256 fef42abbce026d49be11881e8a75d6a0324fb0d210878d826dfdd1540a5d9675

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 29786e04d05ea07cfc10c10ca360cf37af803b25b49246c3acd749038a9d99c5
MD5 efdf3eec4a03ca8b2fff4c3d5b5fb7c9
BLAKE2b-256 21481a8a4da38ff633c0e67c7a5273d9ab6457d9f56cc4574bef0bb98725b587

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 74ab3e542b7388d9e2b9626093528d008a0434b0d4a25a2515fdc496f9eef399
MD5 1bc1d8069e972aa0ed09c95885e4bcf5
BLAKE2b-256 89e70b616017e06271438aa83e7b4b3c017267449725aee29e5309210b5055ce

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c5e8aa0e18a7b218d40cb1c5a6e15c9ad6d43a18e72d5f152f39a1e89afb46b7
MD5 c3433fccc9079ac44ae10b89fab61b83
BLAKE2b-256 7ce0544c9820c59914ffa4c57e41c7ace38eb98f1babbfd67a78a5b24094125b

See more details on using hashes here.

File details

Details for the file gseapy-1.1.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gseapy-1.1.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f289a67363e0c34215e28638090f16662331edf1616cb27413307e652d06eba5
MD5 1da52bc65ffdd458c0f4d393c99032d1
BLAKE2b-256 b1db2ebdcd3f0f33313fdacbe3f58a5bab5fb13cf5b17d676cc4b557faaa55ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page