Skip to main content

Semantic Learning algorithm based on Inflate and deflate Mutation (SLIM GSGP)

Project description

SLIM (Semantic Learning algorithm based on Inflate and deflate Mutation)

gsgp_slim is a Python library that implements the SLIM algorithm, which is a variant of the Geometric Semantic Genetic Programming (GSGP). This library includes functions for running standard Genetic Programming (GP), GSGP, and all developed versions of the SLIM algorithm. Users can specify the version of SLIM they wish to use and obtain results accordingly.

Installation

To install the library, use the following command:

pip install slim

Additionally, make sure to install all required dependencies:

pip install -r requirements.txt

Usage

Running GP

To use the GP algorithm, you can use the following example:

from slim.main_gp import gp  # import the slim library
from datasets.data_loader import load_ppb  # import the loader for the dataset PPB
from slim.evaluators.fitness_functions import rmse  # import the rmse fitness metric
from slim.utils.utils import train_test_split  # import the train-test split function

# Load the PPB dataset
X, y = load_ppb(X_y=True)

# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, p_test=0.4)

# Split the test set into validation and test sets
X_val, X_test, y_val, y_test = train_test_split(X_test, y_test, p_test=0.5)

# Apply the GP algorithm
final_tree = gp(X_train=X_train, y_train=y_train,
                X_test=X_val, y_test=y_val,
                dataset_name='ppb', pop_size=100, n_iter=100)

# Show the best individual structure at the last generation
final_tree.print_tree_representation()

# Get the prediction of the best individual on the test set
predictions = final_tree.predict(X_test)

# Compute and print the RMSE on the test set
print(float(rmse(y_true=y_test, y_pred=predictions)))

Running standard GSGP

To use the GSGP algorithm, you can use the following example:

from slim.main_gsgp import gsgp  # import the slim library
from datasets.data_loader import load_ppb  # import the loader for the dataset PPB
from slim.evaluators.fitness_functions import rmse  # import the rmse fitness metric
from slim.utils.utils import train_test_split  # import the train-test split function
from slim.utils.utils import generate_random_uniform  # import the mutation step function

# Load the PPB dataset
X, y = load_ppb(X_y=True)

# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, p_test=0.4)

# Split the test set into validation and test sets
X_val, X_test, y_val, y_test = train_test_split(X_test, y_test, p_test=0.5)

# Apply the Standard GSGP algorithm
final_tree = gsgp(X_train=X_train, y_train=y_train,
                  X_test=X_val, y_test=y_val,
                  dataset_name='ppb', pop_size=100, n_iter=100,
                  ms=generate_random_uniform(0, 1))

# Get the prediction of the best individual on the test set
predictions = final_tree.predict(X_test)

# Compute and print the RMSE on the test set
print(float(rmse(y_true=y_test, y_pred=predictions)))

Running SLIM

To use the SLIM GSGP algorithm, you can use the following example:

from slim.main_slim import slim  # import the slim library
from datasets.data_loader import load_ppb  # import the loader for the dataset PPB
from slim.evaluators.fitness_functions import rmse  # import the rmse fitness metric
from slim.utils.utils import train_test_split  # import the train-test split function
from slim.utils.utils import generate_random_uniform  # import the mutation step function

# Load the PPB dataset
X, y = load_ppb(X_y=True)

# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, p_test=0.4)

# Split the test set into validation and test sets
X_val, X_test, y_val, y_test = train_test_split(X_test, y_test, p_test=0.5)

# Apply the SLIM GSGP algorithm
final_tree = slim(X_train=X_train, y_train=y_train,
                  X_test=X_val, y_test=y_val,
                  dataset_name='ppb', slim_version='SLIM+SIG2', pop_size=100, n_iter=100,
                  ms=generate_random_uniform(0, 1), p_inflate=0.5)

# Show the best individual structure at the last generation
final_tree.print_tree_representation()

# Get the prediction of the best individual on the test set
predictions = final_tree.predict(X_test)

# Compute and print the RMSE on the test set
print(float(rmse(y_true=y_test, y_pred=predictions)))

Arguments for the gp, gsgp and slim function

Common arguments

  • X_train : A torch tensor with the training input data (default: None).
  • y_train : A torch tensor with the training output data (default: None).
  • X_test : A torch tensor with the testing input data (default: None).
  • y_test : A torch tensor with the testing output data (default: None).
  • dataset_name : A string specifying how the results will be logged (default: None).
  • pop_size : An integer specifying the population size (default: 100).
  • n_iter : An integer specifying the number of iterations (default: 1000).
  • elitism : A boolean specifying the presence of elitism (default: True).
  • n_elites : An integer specifying the number of elites (default: 1).
  • init_depth : An integer specifying the initial depth of the GP tree
    • default: 6 for gp and slim
    • default: 8 for gsgp
  • log_path : A string specifying where the results are going to be saved
    • default: os.path.join(os.getcwd(), "log", "gp.csv") for slim
    • default: os.path.join(os.getcwd(), "log", "gsgp.csv") for slim
    • default: os.path.join(os.getcwd(), "log", "slim.csv") for slim
  • seed: An integer specifying the seed for randomness (default: 1).

Specific for gp

  • p_xo : A float specifying the crossover probability (default: 0.8).
  • max_depth : An integer specifying the maximum depth of the GP tree (default: 17).

Specific for gsgp

  • p_xo : A float specifying the crossover probability (default: 0.0).
    • ms: A callable function to generate the mutation step (default: generate_random_uniform(0, 1)).

Specific for slim

  • slim_version: A string specifying the version of SLIM-GSGP to run (default: "SLIM+SIG2").
  • ms: A callable function to generate the mutation step (default: generate_random_uniform(0, 1)).
  • p_inflate: A float specifying the probability to apply the inflate mutation (default: 0.5).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gsgp_slim-0.1.tar.gz (32.7 kB view details)

Uploaded Source

Built Distribution

gsgp_slim-0.1-py3-none-any.whl (90.7 kB view details)

Uploaded Python 3

File details

Details for the file gsgp_slim-0.1.tar.gz.

File metadata

  • Download URL: gsgp_slim-0.1.tar.gz
  • Upload date:
  • Size: 32.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.2

File hashes

Hashes for gsgp_slim-0.1.tar.gz
Algorithm Hash digest
SHA256 4c28540bd971ea95e7369309a0cbf9149ab58d66bf9f3dbe7991aa022070720f
MD5 7ce8b7485d5b02e2148a4d6b5e27c9ac
BLAKE2b-256 6f2eb05aa2b6af30617d589e714ad978b5faef3064264cae2c98b0b351155000

See more details on using hashes here.

File details

Details for the file gsgp_slim-0.1-py3-none-any.whl.

File metadata

  • Download URL: gsgp_slim-0.1-py3-none-any.whl
  • Upload date:
  • Size: 90.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.2

File hashes

Hashes for gsgp_slim-0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 c08057b63379486a64a49ed05421bfc7f598a3f80e5ca754e1cafc870bb2c639
MD5 9b907f3c1da36f132252b7112ddada15
BLAKE2b-256 8225a28edca14b132d8b7e006b11136d8fdc85d87b47452a345df8287e2833ec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page