Skip to main content

Semantic Learning algorithm based on Inflate and deflate Mutation (SLIM GSGP)

Project description

SLIM (Semantic Learning algorithm based on Inflate and deflate Mutation)

gsgp_slim is a Python library that implements the SLIM algorithm, which is a variant of the Geometric Semantic Genetic Programming (GSGP). This library includes functions for running standard Genetic Programming (GP), GSGP, and all developed versions of the SLIM algorithm. Users can specify the version of SLIM they wish to use and obtain results accordingly. Slim's documentation can be accessed on GitHub Pages.

Installation

To install the library, use the following command:

pip install gsgp_slim

Additionally, make sure to install all required dependencies:

pip install -r requirements.txt

Usage

Running GP

To use the GP algorithm, you can use the following example:

from slim.main_gp import gp  # import the slim library
from slim.datasets.data_loader import load_ppb  # import the loader for the dataset PPB
from slim.evaluators.fitness_functions import rmse  # import the rmse fitness metric
from slim.utils.utils import train_test_split  # import the train-test split function

# Load the PPB dataset
X, y = load_ppb(X_y=True)

# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, p_test=0.4)

# Split the test set into validation and test sets
X_val, X_test, y_val, y_test = train_test_split(X_test, y_test, p_test=0.5)

# Apply the GP algorithm
final_tree = gp(X_train=X_train, y_train=y_train,
                X_test=X_val, y_test=y_val,
                dataset_name='ppb', pop_size=100, n_iter=100)

# Show the best individual structure at the last generation
final_tree.print_tree_representation()

# Get the prediction of the best individual on the test set
predictions = final_tree.predict(X_test)

# Compute and print the RMSE on the test set
print(float(rmse(y_true=y_test, y_pred=predictions)))

Running standard GSGP

To use the GSGP algorithm, you can use the following example:

from slim.main_gsgp import gsgp  # import the slim library
from slim.datasets.data_loader import load_ppb  # import the loader for the dataset PPB
from slim.evaluators.fitness_functions import rmse  # import the rmse fitness metric
from slim.utils.utils import train_test_split  # import the train-test split function
from slim.utils.utils import generate_random_uniform  # import the mutation step function

# Load the PPB dataset
X, y = load_ppb(X_y=True)

# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, p_test=0.4)

# Split the test set into validation and test sets
X_val, X_test, y_val, y_test = train_test_split(X_test, y_test, p_test=0.5)

# Apply the Standard GSGP algorithm
final_tree = gsgp(X_train=X_train, y_train=y_train,
                  X_test=X_val, y_test=y_val,
                  dataset_name='ppb', pop_size=100, n_iter=100,
                  ms=generate_random_uniform(0, 1))

# Get the prediction of the best individual on the test set
predictions = final_tree.predict(X_test)

# Compute and print the RMSE on the test set
print(float(rmse(y_true=y_test, y_pred=predictions)))

Running SLIM

To use the SLIM GSGP algorithm, you can use the following example:

from slim.main_slim import slim  # import the slim library
from slim.datasets.data_loader import load_ppb  # import the loader for the dataset PPB
from slim.evaluators.fitness_functions import rmse  # import the rmse fitness metric
from slim.utils.utils import train_test_split  # import the train-test split function
from slim.utils.utils import generate_random_uniform  # import the mutation step function

# Load the PPB dataset
X, y = load_ppb(X_y=True)

# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, p_test=0.4)

# Split the test set into validation and test sets
X_val, X_test, y_val, y_test = train_test_split(X_test, y_test, p_test=0.5)

# Apply the SLIM GSGP algorithm
final_tree = slim(X_train=X_train, y_train=y_train,
                  X_test=X_val, y_test=y_val,
                  dataset_name='ppb', slim_version='SLIM+SIG2', pop_size=100, n_iter=100,
                  ms=generate_random_uniform(0, 1), p_inflate=0.5)

# Show the best individual structure at the last generation
final_tree.print_tree_representation()

# Get the prediction of the best individual on the test set
predictions = final_tree.predict(X_test, slim_version='SLIM+SIG2')

# Compute and print the RMSE on the test set
print(float(rmse(y_true=y_test, y_pred=predictions)))

Arguments for the gp, gsgp and slim function

Common arguments

  • X_train : A torch tensor with the training input data (default: None).
  • y_train : A torch tensor with the training output data (default: None).
  • X_test : A torch tensor with the testing input data (default: None).
  • y_test : A torch tensor with the testing output data (default: None).
  • dataset_name : A string specifying how the results will be logged (default: None).
  • pop_size : An integer specifying the population size (default: 100).
  • n_iter : An integer specifying the number of iterations (default: 1000).
  • elitism : A boolean specifying the presence of elitism (default: True).
  • n_elites : An integer specifying the number of elites (default: 1).
  • init_depth : An integer specifying the initial depth of the GP tree
    • default: 6 for gp and slim
    • default: 8 for gsgp
  • log_path : A string specifying where the results are going to be saved
    • default: os.path.join(os.getcwd(), "log", "gp.csv") for slim
    • default: os.path.join(os.getcwd(), "log", "gsgp.csv") for slim
    • default: os.path.join(os.getcwd(), "log", "slim.csv") for slim
  • seed: An integer specifying the seed for randomness (default: 1).

Specific for gp

  • p_xo : A float specifying the crossover probability (default: 0.8).
  • max_depth : An integer specifying the maximum depth of the GP tree (default: 17).

Specific for gsgp

  • p_xo : A float specifying the crossover probability (default: 0.0).
    • ms: A callable function to generate the mutation step (default: generate_random_uniform(0, 1)).

Specific for slim

  • slim_version: A string specifying the version of SLIM-GSGP to run (default: "SLIM+SIG2").
  • ms: A callable function to generate the mutation step (default: generate_random_uniform(0, 1)).
  • p_inflate: A float specifying the probability to apply the inflate mutation (default: 0.5).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gsgp_slim-0.1.5.tar.gz (1.6 MB view details)

Uploaded Source

Built Distribution

gsgp_slim-0.1.5-py3-none-any.whl (1.6 MB view details)

Uploaded Python 3

File details

Details for the file gsgp_slim-0.1.5.tar.gz.

File metadata

  • Download URL: gsgp_slim-0.1.5.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for gsgp_slim-0.1.5.tar.gz
Algorithm Hash digest
SHA256 259d8b77e4fd61a2b3525b884055962e0b7caac05e54682a2db42b272c2cd3af
MD5 fddfd411bda04c5c00514e1b604f5133
BLAKE2b-256 53429f42efafd4f3cbd94f98fed7e21fa2294968b7bdaee1ff55bc96306c9ecb

See more details on using hashes here.

File details

Details for the file gsgp_slim-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: gsgp_slim-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for gsgp_slim-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 9034e3ef92c9d7da06ad832439b0ea6782df289a868fddbb24fc1cbccc2a2173
MD5 9c2815fc2af7459a7ce29c46184f3f0b
BLAKE2b-256 8b9c67a96f19faca757a5361d3c67ee34e8fe8e95569f90b66c414965605e6fe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page