Skip to main content

An Object Relational Mapper (ORM) for the Google Sheets API. Provides a straightforward and intuitive model-based query interface, making it easy to interact with Google Sheets as if it were more like a database. Offers a fast and flexible way to get up and running with a Google Sheets database, for rapid prototyping and development in Python.

Project description

gspread-models

Maintainability continuous integration License: MIT

The gspread-models package is an Object Relational Mapper (ORM) for the Google Sheets API. It provides a straightforward and intuitive model-based query interface, making it easy to interact with Google Sheets as if it were more like a database. This package offers a fast and flexible way to get up and running with a Google Sheets database, for rapid prototyping and development in Python.

Key Features:

  • Read and Write Data: Seamlessly read and write data to and from Google Sheets.
  • Easy Setup: Minimal schema requirements make it simple to get started.
  • Intuitive Query Interface: Familiar object-oriented query methods inspired by ActiveRecord (Ruby) and SQLAlchemy (Python).
  • Auto-incrementing ID: Automatically manages a primary key "id" column.
  • Timestamps: Automatically manages a "created_at" timestamp column.
  • Datetime Handling: Converts datetime columns to Python datetime objects for easier manipulation.
  • Flexible Migrations: Easily update the schema by modifying your Google Sheet and updating the corresponding list of columns.

Installation

Install the package from PyPI:

pip install gspread_models

Quick Start

Setup

Step 1: Bind the base model to your Google Sheets document and your credentials (see Authentication for more details):

from gspread_models.base import BaseModel

BaseModel.bind(
    document_id="your-document-id",
    credentials_filepath="/path/to/google-credentials.json"
)

Step 2: Define your own light-weight class that inherits from the base model:

class Book(BaseModel):

    SHEET_NAME = "books"

    COLUMNS = ["title", "author", "year"]

When defining your class, specify a SHEET_NAME as well as a list of sheet-specific COLUMNS.

Step 3: Setup a corresponding sheet for this model.

To support the example above, create a sheet called "books", and specify an initial row of column headers: "id", "title", "author", "year", and "created_at".

NOTE: In addition to the sheet-specific attributes ("title", "author", and "year"), the base model will manage metadata columns, including a unique identifier ("id") as well as a timestamp ("created_at").

Usage

Once you have your model class setup, you can utilize the Query Interface, to read and write data to the sheet.

Writing / appending records to the sheet:

Book.create_all([
    {"title": "To Kill a Mockingbird", "author": "Harper Lee", "year": 1960},
    {"title": "1984", "author": "George Orwell", "year": 1949},
    {"title": "The Great Gatsby", "author": "F. Scott Fitzgerald", "year": 1925},
    {"title": "The Catcher in the Rye", "author": "J.D. Salinger", "year": 1951},
    {"title": "Pride and Prejudice", "author": "Jane Austen", "year": 1813},
])

Fetching all records from the sheet:

books = Book.all()

for book in books:
    print(book.id, "|", book.title, "|", book.author)

#> 1 | To Kill a Mockingbird | Harper Lee
#> 2 | 1984 | George Orwell
#> 3 | The Great Gatsby | F. Scott Fitzgerald
#> 4 | The Catcher in the Rye | J.D. Salinger
#> 5 | Pride and Prejudice | Jane Austen

It is easy to create a pandas DataFrame from the returned objects by converting each to a dictionary:

from pandas import DataFrame

books_df = DataFrame([dict(book) for book in books])
books_df.head()

#> id title                   author              year  created_at
#> 1  To Kill a Mockingbird   Harper Lee          1960  2024-05-22 21:36:25.582605+00:00
#> 2  1984                    George Orwell       1949  2024-05-22 21:36:25.582738+00:00
#> 3  The Great Gatsby        F. Scott Fitzgerald 1925  2024-05-22 21:36:25.582778+00:00
#> 4  The Catcher in the Rye  J.D. Salinger       1951  2024-05-22 21:36:25.582813+00:00
#> 5  Pride and Prejudice     Jane Austen         1813  2024-05-22 21:36:25.582846+00:00

For more details, see the usage documentation below:

Examples

Here are some examples that demonstrate the usage of gspread-models within a variety of contexts:

If you use the gspread-models package, you are encouraged to add your project to this list, by submitting a pull request or opening an issue.

Contributing

Contributions welcome! Here are some reference guides to help you get started as a contributor or maintainer of this package:

Acknowlegements

This package is built on top of the awesome gspread package.

License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gspread_models-1.0.7.tar.gz (11.1 kB view details)

Uploaded Source

Built Distribution

gspread_models-1.0.7-py3-none-any.whl (10.4 kB view details)

Uploaded Python 3

File details

Details for the file gspread_models-1.0.7.tar.gz.

File metadata

  • Download URL: gspread_models-1.0.7.tar.gz
  • Upload date:
  • Size: 11.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for gspread_models-1.0.7.tar.gz
Algorithm Hash digest
SHA256 76785c392cb67bfa734d7ff7ad6ffbc5133c20bf387645887a6693d612c3fcf3
MD5 5aaf060c4cbdb61c4e910a9a23df4444
BLAKE2b-256 711360e291cdcad8d78d99838f5993a571fd5540f64f9a8b7d2b10cd8211da86

See more details on using hashes here.

Provenance

File details

Details for the file gspread_models-1.0.7-py3-none-any.whl.

File metadata

File hashes

Hashes for gspread_models-1.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 e352192502e3442d8b8838548fa0fa7d4cf7af6ee02f9f8c07062cd569546628
MD5 87e64899f1b338dad170855446c1432e
BLAKE2b-256 9d768463ba4d56a77111524a75831373df5f506832528bc18b157c2463d56b12

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page