Skip to main content

Geostatistics tools for interpolation and simulation.

Project description

Jupyter Book Badge Binder PyPI PyPI - Downloads Twitter

GStatSim

GStatSim is a Python package specifically designed for geostatistical interpolation and simulation. It is inspired by open source geostatistical resources such as GeostatsPy and SciKit-GStat. The functions are intended to address the challenges of working with large data sets, non-linear trends, variability in measurement density, and non-stationarity. These tools are part of our ongoing effort to develop and adapt open-access geostatistical functions.

We have created Jupyter Book tutorials here: https://gatorglaciology.github.io/gstatsimbook/intro.html

See our paper here: https://doi.org/10.5194/gmd-16-3765-2023

In its current state, the demos focus on the geostatistical simulation of subglacial topography. However, these protocols could be applied to a number geoscientific topics.

We will continuously develop new tools and tutorials to address specific technical challenges in geostatistics. Do you have feedback or suggestions? Specific things that we should account for? Feel free to contact me at emackie@ufl.edu. Our goal is to create tools that are useful and accessible, so we welcome your thoughts and insight.

Features

Functions

Some of the tools in GStatSim:

  • skrige - Simple kriging
  • okrige - Ordinary kriging
  • skrige_sgs - Sequential Gaussian simulation using simple kriging
  • okrige_sgs - Sequential Gaussian simulation using ordinary kriging
  • cluster_sgs - Sequential Gaussian simulation where different variograms are used in different areas
  • cokrige_mm1 - Cokriging (kriging with a secondary constraint) under Markov assumptions
  • cosim_mm1 - Cosimulation under Markov assumptions

Demos

We have created tutorials that are designed to provide an intuitive understanding of geostatistical methods and to demonstrate how these methods are used. The current demos are:

  • 1_Experimental_Variogram.ipynb - Demonstration of experimental variogram calculation to quantify spatial relationships.
  • 2_Variogram_model.ipynb - A tutorial on fitting a variogram model to an experimental variogram.
  • 3_Simple_kriging_and_ordinary_kriging.ipynb - Demonstration of simple kriging and ordinary kriging interpolation.
  • 4_Sequential_Gaussian_Simulation.ipynb - An introduction to stochastic simulation.
  • 5_Variogram_interpolation_comparison.ipynb - A demonstration of kriging and SGS with different variogram models.
  • 6_interpolation_with_anisotropy.ipynb - A demonstration of kriging and SGS with anisotropy.
  • 7_non-stationary_SGS_example1.ipynb - A tutorial on SGS with multiple variograms. This demo uses k-means clustering to divide the conditioning data into groups that are each assigned their own variogram.
  • 8_non-stationary_SGS_example2.ipynb - SGS using multiple variograms where the clusters are determined automatically.
  • 9_interpolation_with_a_trend.ipynb - Kriging and SGS in the presence of a large-scale trend.
  • 10_cokriging_and_cosimulation_MM1.ipynb - Kriging and SGS using secondary constraints.

Contributors

(Emma) Mickey MacKie, University of Florida

Michael Field, University of Florida

Lijing Wang, Lawrence Berkeley National Laboratory

(Zhen) David Yin, Stanford University

Nathan Schoedl, University of Florida

Matthew Hibbs, University of Florida

Mirko Malicke, Karlsruhe Institute of Technology

Usage

Install GStatSim with pip install gstatsim

or

git clone https://github.com/GatorGlaciology/GStatSim

Package dependencies

  • Numpy
  • Pandas
  • Scipy
  • tqdm
  • Sklearn

Requirements for visualization and variogram analysis

  • Matplotlib
  • SciKit-GStat

These can all be installed using the command pip install (package name).

Educational use

GStatSim is well-suited for educational use. Please contact us if you plan on using GStatSim material in a course so we can track the impact of our work.

Cite as

MacKie, E. J., Field, M., Wang, L., Yin, Z., Schoedl, N., Hibbs, M., & Zhang, A. (2023). GStatSim V1. 0: a Python package for geostatistical interpolation and conditional simulation. Geoscientific Model Development, 16(13), 3765-3783.

or

@article{mackie2023gstatsim, title={GStatSim V1. 0: a Python package for geostatistical interpolation and conditional simulation}, author={MacKie, Emma J and Field, Michael and Wang, Lijing and Yin, Zhen and Schoedl, Nathan and Hibbs, Matthew and Zhang, Allan}, journal={Geoscientific Model Development}, volume={16}, number={13}, pages={3765--3783}, year={2023}, publisher={Copernicus Publications G{"o}ttingen, Germany} }

Datasets

The demos use radar bed measurements from the Center for the Remote Sensing of Ice Sheets (CReSIS, 2020).

CReSIS. 2020. Radar depth sounder, Lawrence, Kansas, USA. Digital Media. http://data.cresis.ku.edu/.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gstatsim-1.0.6.tar.gz (14.2 kB view details)

Uploaded Source

Built Distribution

gstatsim-1.0.6-py3-none-any.whl (12.1 kB view details)

Uploaded Python 3

File details

Details for the file gstatsim-1.0.6.tar.gz.

File metadata

  • Download URL: gstatsim-1.0.6.tar.gz
  • Upload date:
  • Size: 14.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for gstatsim-1.0.6.tar.gz
Algorithm Hash digest
SHA256 97ce4ff7fb819032bdb0c7d0ced0ce6791febc07b736e98f4e288a2e7beaf3a5
MD5 fee4c28dd1361863f263c6625634ed9d
BLAKE2b-256 439ebab0ee450a6b9c975912d430b05b794dcd9e3b3f079db50b5fefaa9865a9

See more details on using hashes here.

File details

Details for the file gstatsim-1.0.6-py3-none-any.whl.

File metadata

  • Download URL: gstatsim-1.0.6-py3-none-any.whl
  • Upload date:
  • Size: 12.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for gstatsim-1.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 7523d690d043d53a01cb2ecf87934bb0f39fd84d726eefb59495997c6cf772c7
MD5 6c3acd89141f5a061d992d3cc134e5d3
BLAKE2b-256 fc60fa53727945775251eeb85210da2656a6a543f723ce85c9ca1e0de20d2415

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page