Skip to main content

Geostatistics & Machine Learning toolbox

Project description

gstlearn: The Geostatistics & Machine Learning Python Package

License DOI

The gstlearn Python package is a cross-platform Python package wrapping the gstlearn C++ Library. It offers to Python users all famous Geostatistical methodologies developed and/or invented by the Geostatistic Team of the Geosciences Research Center!

More details for gstlearn are available here: https://gstlearn.org

If you need to plot gstlearn outputs, you can import gstlearn.plot module which is based on matplotlib.

References

The gstlearn Python package is a Python wrapper of the gstlearn C++ Library.

This package contains a copy of doxy2swig python script (see LICENSE.doxy2swig in doc folder).

The gstlearn Python package is a derivative work based on the swigex0 project: https://github.com/fabien-ors/swigex0

How to cite

When using the gstlearn Python Package, please, use this to cite us in any publication or results for which gstlearn has been used:

DOI

You may be interested in the citation file gstlearn.bib

Installation

For using this Python package you only need Python 3.8 (or higher) (with numpy, pandas and matplotlib) and execute the following command:

pip install gstlearn

Usage

We refer the reader to this course page for an introduction and important information about Python gstlearn package.

Simply import the gstlearn Python package and its plot module, then enjoy:

# Import packages
import numpy as np
import matplotlib.pyplot as plt
import gstlearn as gl
import gstlearn.plot as gp
# Grid size
nx = 60
ny = 30
mygrid = gl.DbGrid.create([nx,ny],[1,1])
# Add a gaussian random field
var = np.random.randn(nx * ny)
mygrid.addColumns(var, "var1", gl.ELoc.Z)
# Display the field
ax = gp.grid(mygrid)
ax.decoration(title="Gaussian random field")
plt.show()

Some tutorials (Jupyter Notebooks) are provided in the demo directory here and their HTML rendering is provided here.

Some tests (Python scripts) are available in the tests directory of the gstlearn github repository.

Known caveats

If you experience the following error while importing gstlearn package under Python:

RuntimeError: module compiled against API version 0x10 but this version of numpy is 0xe

... you may need to upgrade numpy:

python -m pip install --upgrade numpy

Documentation

The classes and functions documentation is provided with the gstlearn C++ library as html files generated by Doxygen. Please, refer to gstlearn C++ library API See here for more details. Only the public methods are exported by SWIG and must be considered in the Python package.

Changelog

Please, look at CHANGES file.

Development

Requirements

For building the gstlearn Python package, the requirements for compiling gstlearn C++ library must be installed beforehand. Then, the following additional tools must be also available:

  • SWIG 4 or higher
  • Python 3 or higher with pip, numpy, pandas, scipy and matplotlib modules installed
  • pypandoc, scikit-sparse, plotly, jupyter and notebook Python modules [Optional]

If you modified your system, you must reinstall the requirements from scratch following next instructions. You must delete 'gstlearn' existing source folders (if so).

Note :

Linux (Ubuntu)

  1. Install gstlearn C++ library requirements for Linux here

  2. Then, execute the following commands:

sudo apt install python3
sudo apt install python3-pip
sudo apt install swig
python3 -m pip install numpy pandas scipy matplotlib
  1. Finally, execute the following commands (optional):
sudo apt install pandoc jupyter libsuitesparse-dev
python3 -m pip install pypandoc plotly jupyter notebook scikit-sparse

MacOS

  1. Install gstlearn C++ library requirements for MacOS here

  2. Then, execute the following commands (Not tested):

brew install python3
brew install swig
python3 -m pip install numpy pandas scipy matplotlib
  1. Finally, execute the following commands (optional):
brew install pandoc jupyter libsuitesparse-dev
python3 -m pip install pypandoc plotly jupyter notebook scikit-sparse

Notes:

  • These instructions for MacOS are currently not tested - above packages may not exist

Windows

Install all tools
  1. Install gstlearn C++ library requirements for Windows (Microsoft Visual Studio) here

  2. Then, download and install the following tools using default options during installation:

  • Python 3+ from here (Windows installer [exe] - check 'Add python.exe to PATH' in the first panel)
  • SWIG 4+ from here (swigwin archive [zip], archive file to be extracted in a folder of your choice, but not in the gstlearn source folder - remind the installation folder, assume it is C:\swigwin-4.1.0))
  • Pandoc from here (msi installer [msi] - simply execute the program)
  1. Then, install additional Python modules by running following instructions in a command prompt:
python -m pip install numpy pandas scipy matplotlib
  1. Finally, install optional Python modules by running following instructions in a command prompt:
python -m pip install pypandoc plotly jupyter notebook scikit-sparse
Update the Path environment variable

The Path environment variable (System variables) must be updated to make swig.exe available in the batch command line:

  1. Follow this guide to add SWIG installation folders in the Path System variable (i.e: C:\swigwin-4.1.0)
  2. Restart Windows

Installation from Source

  1. For getting the gstlearn Python package sources files, just clone the github repository:
git clone https://github.com/gstlearn/gstlearn.git
cd gstlearn

Next time, you will only need to pull the repository (If you have some local undesirable modifications, you have to revert them and execute the pull, otherwise do not execute git reset):

cd gstlearn
git reset --hard
git pull
  1. Then, these instructions will compile and install the gstlearn Python package in your usual Python site-packages directory.

GCC, Clang, ...

...or any other single configuration compilers:

cmake -Bbuild -S. -DBUILD_PYTHON=ON -DCMAKE_BUILD_TYPE=Release
cmake --build build --target python_install

or for those who prefer a single command line:

mkdir -p build & cd build & cmake .. -DBUILD_PYTHON=ON & make python_install

or even faster:

make python_install

Microsoft Visual Studio, ...

...or any other multiple configurations compilers:

cmake -Bbuild -S. -DBUILD_PYTHON=ON
cmake --build build --target python_install --config Release

Execute Non-regression Tests

The check* targets bring some required runtime customization, so do not use the standard ctest command for triggering the non-regression tests.

To build and launch non-regression Python tests, you need to execute the following command:

GCC, Clang, MinGW, ...

...or any other single configuration compiler:

cmake --build build --target check_py
cmake --build build --target check_ipynb

or even faster:

make check_py
make check_ipynb

Microsoft Visual Studio, ...

...or any other multiple configurations compiler:

cmake --build build --target check_py --config Release
cmake --build build --target check_ipynb --config Release

Important Notes

  • If your system distribution repository doesn't provide minimum required versions, please install the tools manually (see provider website)
  • You may need to reconnect to your session after installing some requirements
  • If you plan to generate the documentation, add -DBUILD_DOXYGEN=ON to the first cmake command above.
  • If you don't know how to execute github commands, you may read this.
  • Using Visual Studio on a Windows where MinGW is also installed may need to add -G "Visual Studio 16 2019" in the first command (adapt version).
  • The Windows C++ Compiler used must be the same that the one used for compiling Python (Visual C++). Using another compiler than Visual C++ is not supported.
  • If you want to build and install the Debug version, you must replace Release by Debug above
  • You may need to precise the location of Boost, Eigen3, SWIG, Doxygen or HDF5 installation directory. In that case, add the following variables in the first cmake command above:
    • -DBoost_ROOT="path/to/boost"
    • -DEigen3_ROOT="path/to/eigen3"
    • -DSWIG_ROOT="path/to/swig"
    • -DDoxygen_ROOT="path/to/doxygen"
    • -DHDF5_ROOT="path/to/hdf5"

Remove Installed Package

To uninstall the gstlearn Python package, execute following command:

python3 -m pip uninstall gstlearn

Note : You may need to directly modify your site-packages folder by:

  • Removing the reference to the old gstlearn package version (see this topic)
  • Removing a line which contains gstlearn in the ./easy-install.pth file of the site-packages folder
  • Removing all directories starting with '~stlearn from the site-packages folder

License

BSD 3-clause

2024 Team gstlearn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

gstlearn-1.5.1-cp313-cp313-win_amd64.whl (6.1 MB view details)

Uploaded CPython 3.13 Windows x86-64

gstlearn-1.5.1-cp313-cp313-win32.whl (4.5 MB view details)

Uploaded CPython 3.13 Windows x86

gstlearn-1.5.1-cp313-cp313-manylinux1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.13

gstlearn-1.5.1-cp313-cp313-macosx_15_0_universal2.whl (5.1 MB view details)

Uploaded CPython 3.13 macOS 15.0+ universal2 (ARM64, x86-64)

gstlearn-1.5.1-cp313-cp313-macosx_14_0_universal2.whl (5.1 MB view details)

Uploaded CPython 3.13 macOS 14.0+ universal2 (ARM64, x86-64)

gstlearn-1.5.1-cp313-cp313-macosx_13_0_universal2.whl (5.6 MB view details)

Uploaded CPython 3.13 macOS 13.0+ universal2 (ARM64, x86-64)

gstlearn-1.5.1-cp312-cp312-win_amd64.whl (6.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

gstlearn-1.5.1-cp312-cp312-win32.whl (4.5 MB view details)

Uploaded CPython 3.12 Windows x86

gstlearn-1.5.1-cp312-cp312-manylinux1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.12

gstlearn-1.5.1-cp312-cp312-macosx_15_0_universal2.whl (5.1 MB view details)

Uploaded CPython 3.12 macOS 15.0+ universal2 (ARM64, x86-64)

gstlearn-1.5.1-cp312-cp312-macosx_14_0_universal2.whl (5.1 MB view details)

Uploaded CPython 3.12 macOS 14.0+ universal2 (ARM64, x86-64)

gstlearn-1.5.1-cp312-cp312-macosx_13_0_universal2.whl (5.6 MB view details)

Uploaded CPython 3.12 macOS 13.0+ universal2 (ARM64, x86-64)

gstlearn-1.5.1-cp311-cp311-win_amd64.whl (6.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

gstlearn-1.5.1-cp311-cp311-win32.whl (4.5 MB view details)

Uploaded CPython 3.11 Windows x86

gstlearn-1.5.1-cp311-cp311-manylinux1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.11

gstlearn-1.5.1-cp311-cp311-macosx_15_0_universal2.whl (5.0 MB view details)

Uploaded CPython 3.11 macOS 15.0+ universal2 (ARM64, x86-64)

gstlearn-1.5.1-cp311-cp311-macosx_14_0_universal2.whl (5.0 MB view details)

Uploaded CPython 3.11 macOS 14.0+ universal2 (ARM64, x86-64)

gstlearn-1.5.1-cp311-cp311-macosx_13_0_universal2.whl (5.5 MB view details)

Uploaded CPython 3.11 macOS 13.0+ universal2 (ARM64, x86-64)

gstlearn-1.5.1-cp310-cp310-win_amd64.whl (6.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

gstlearn-1.5.1-cp310-cp310-win32.whl (4.5 MB view details)

Uploaded CPython 3.10 Windows x86

gstlearn-1.5.1-cp310-cp310-manylinux1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.10

gstlearn-1.5.1-cp310-cp310-macosx_15_0_universal2.whl (5.0 MB view details)

Uploaded CPython 3.10 macOS 15.0+ universal2 (ARM64, x86-64)

gstlearn-1.5.1-cp310-cp310-macosx_14_0_universal2.whl (5.0 MB view details)

Uploaded CPython 3.10 macOS 14.0+ universal2 (ARM64, x86-64)

gstlearn-1.5.1-cp310-cp310-macosx_13_0_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.10 macOS 13.0+ x86-64

gstlearn-1.5.1-cp39-cp39-win_amd64.whl (6.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

gstlearn-1.5.1-cp39-cp39-win32.whl (4.5 MB view details)

Uploaded CPython 3.9 Windows x86

gstlearn-1.5.1-cp39-cp39-manylinux1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.9

gstlearn-1.5.1-cp39-cp39-macosx_13_0_x86_64.whl (5.5 MB view details)

Uploaded CPython 3.9 macOS 13.0+ x86-64

File details

Details for the file gstlearn-1.5.1-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 7c8980adba74b19761912e9ffc46dfef4f1e85aac6ed55ccddaa0a725fe2cccd
MD5 ebb527e661572b017114e3af64b7263e
BLAKE2b-256 756d0a899a54fbc520e92cc07a26a7b40e9a7d13bf3c2b0a54da4fbb1e571077

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp313-cp313-win32.whl.

File metadata

  • Download URL: gstlearn-1.5.1-cp313-cp313-win32.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for gstlearn-1.5.1-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 e26f5cb1643d76ec185e74272d1c1a7c8497bbb47a5e51bd0154355112d4dd8c
MD5 18992bf22f99bbfdabbae2512f30ffa4
BLAKE2b-256 8807a6380ee7bd408a67cd6985114816243a145041a9cbde4572efa51a8486e2

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp313-cp313-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp313-cp313-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6cb157b5575d9707f5f86206de536ed378fabcae450edb24eda219f74c52f1d4
MD5 91ddb540b0eb62077c9883a092145a3d
BLAKE2b-256 366aa17b81b84a0ad16b1390a0f138b076724884d0bf041391c1b0678309beed

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp313-cp313-macosx_15_0_universal2.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp313-cp313-macosx_15_0_universal2.whl
Algorithm Hash digest
SHA256 dca44614e551cd2aedca3356f67eef723b4d1fd27306bc4a000b5695119fc397
MD5 47931312692143463914b4e471462ba5
BLAKE2b-256 901e439dc03e7513ccb6b72ef8861a33ce8786e7a5e2be940dddce7ccd128938

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp313-cp313-macosx_14_0_universal2.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp313-cp313-macosx_14_0_universal2.whl
Algorithm Hash digest
SHA256 e934570356a46f1b0f36ae021926d9f41ac8bb45fad62993603ff1738a71c8ca
MD5 29d5a8bbbd9877ea9c3ffd60e002ec48
BLAKE2b-256 f211341ef85ca454b31f423799e2e5307ce915c76193fcf71a8593afd2cd9a39

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp313-cp313-macosx_13_0_universal2.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp313-cp313-macosx_13_0_universal2.whl
Algorithm Hash digest
SHA256 5b64f37489fec00e047ae4a7b12cfd00a8d4735b4dcd8947ba5c164a7254d657
MD5 54617f0ab8633430c47405091da53fb3
BLAKE2b-256 9431c488de08c496162e5bda201e06fffedc09c176d55de768c62f42a1c6eed7

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b2804b2281230bf513aaccc42722624d9d268fa0abfdd9b8bed6fd2b5e950e76
MD5 e7343d0bd73e9d2d7ccf3b611814d164
BLAKE2b-256 f454c6ebb895a9849a781b09bb991e4d8efa7a091d554246f370036001639bf1

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: gstlearn-1.5.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for gstlearn-1.5.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 f1ade202ae46025839db116c0e101c83b35d14a09a5fa51e2a9d38cee48c6cfb
MD5 a8f5a2a4c8ddc8081582b9873cdd4d77
BLAKE2b-256 5bb1f0422e7776539787f7687ada196514928adc142cb208ae82ae3e7382ffac

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c9f8aa57bae5707eb401add2c574e0e73238e2465fa4d140cdb980ba902195ff
MD5 feabf2af59abc616568b5b9a65d2223d
BLAKE2b-256 9354deec91fcaae86e48809a695ecbfb2214f89d0948a0fcec2cb17723a46d9b

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp312-cp312-macosx_15_0_universal2.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp312-cp312-macosx_15_0_universal2.whl
Algorithm Hash digest
SHA256 a0e040346c22d96a06ba0d563bbc95efdcf9214beb9ce050a5b30b13fa0a691f
MD5 e4cf6f221d868657353c400dca6b574f
BLAKE2b-256 5c415d067dfde224c7d5e0deb3648e1a1ee2d2266ea43f7d6b15b159a1494541

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp312-cp312-macosx_14_0_universal2.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp312-cp312-macosx_14_0_universal2.whl
Algorithm Hash digest
SHA256 9deb1889b8303514479bc9f7e62f0ea63f99779768d297a3e7a0f2c413a8ccb3
MD5 fe21b427b59055c3bf654f90a6a44c76
BLAKE2b-256 911e9e10f26d7819d3701cb954476041dcb0520a9db2d7ded7d2285e1ae08ffe

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp312-cp312-macosx_13_0_universal2.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp312-cp312-macosx_13_0_universal2.whl
Algorithm Hash digest
SHA256 0ac76fe5b6716857978f5ddd2ff3df7a51696e5b2943084b0f57d1ec7d581feb
MD5 5f6dd76bf0ff35898801de30d105f60c
BLAKE2b-256 d6397bb1baa5c636b61b70406ba502852e08cd22bd9e022d6bdfea900d3f20d7

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8b890c58d7b37a7a8c87c543697d2ac33a4c42b253c10b108dfb4df16528096f
MD5 48b5e88bfb731b4ff82805f951df4c73
BLAKE2b-256 436b6de48556788b0307f9c834da3fc599e5fc6997fef6cb957d61e7ee941885

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: gstlearn-1.5.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for gstlearn-1.5.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 e1c09fbbf8cefa32787c586aebd2326b8e78cc7bbc1e60415dcd1b6188b2836f
MD5 99ae42b661a5f588a593801bbaebd657
BLAKE2b-256 c19d910d9d9b452c2b550bafc31f708a347d1a403914b08ad67da27334d04f70

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 81499f1692bd6abab7ead6892afd8104235422217d9a1606a8ee18e44ebd191f
MD5 0f8aabde968370a72c372611cb3129ec
BLAKE2b-256 6e9ef71f388fdb3fb03db64ac84fe2247260f2bb2e56681c30b5e05f853676ae

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp311-cp311-macosx_15_0_universal2.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp311-cp311-macosx_15_0_universal2.whl
Algorithm Hash digest
SHA256 fabc4fa3dd755089f777f915c13f8ff25c2b2e1157a2c65be2c50e5ca47d9a17
MD5 6744c2e1442a079c213046b1acb1f82b
BLAKE2b-256 86931a3bd927a1685cb38f8869daca00140c6f5ed0c693e7d0acadb83e9896a8

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp311-cp311-macosx_14_0_universal2.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp311-cp311-macosx_14_0_universal2.whl
Algorithm Hash digest
SHA256 e0a5fbeaa4e4cb7ad26a3aef493e1e2bcc2b1e7c523cbe92e5c198d47008cf67
MD5 9ce643c4b605a8f6bf7cbdfb3fc17eda
BLAKE2b-256 f87db5b5ca9c814f918f3aa9dcd949eea2871925549f0c0867deb8a7c711b80c

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp311-cp311-macosx_13_0_universal2.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp311-cp311-macosx_13_0_universal2.whl
Algorithm Hash digest
SHA256 2de1261d9d9c2ad36e54160b05d80d35b087d6af4f8d4c9c35e4ce7c9877dff5
MD5 ef7eadd73e920a217dc3895cc1664498
BLAKE2b-256 d26a2ec93a690480c64114776188a28f2aa7e2b41c613a021380b402bfd8c3fe

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5b33b806338df07219274568fc3d8ec423c99bc03135b3bf84d03087ec60f535
MD5 495b38d4d0f9b83057f9d70212a8b27a
BLAKE2b-256 77322340f967614d09f3c40f291a4c6dc7d95aca63538c50b89f36af5485f302

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: gstlearn-1.5.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for gstlearn-1.5.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 9579c4999d745a3cc4ad4629dde83d955191bb207eff4c2a490770863f0e1c62
MD5 109d539e1529766f554b39d9e0aa57f3
BLAKE2b-256 746a64b67d8e5de99b93c5aa0e665f4fd52794eca048ba46ca0820aaa56ddcc7

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 478b58798d6a986b25ec5aa657247472c04823f9316e5ba8f240e498260ae152
MD5 7d0eea885c26f076f0b351cd68d26d6e
BLAKE2b-256 78035d60cbd25e836914dacb8b72406615974b3f4b6ccd9d824bcce5410b187a

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp310-cp310-macosx_15_0_universal2.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp310-cp310-macosx_15_0_universal2.whl
Algorithm Hash digest
SHA256 18d88785f6de32cbe2503b0873df1629d8ce9a5185bb8e326300d12f534d7fe9
MD5 a2ba883048d9707a1ead7369980773a8
BLAKE2b-256 145cf8088aaaaa5379a95307b848abf3561857a50897cde9d27483de5bfe5e02

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp310-cp310-macosx_14_0_universal2.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp310-cp310-macosx_14_0_universal2.whl
Algorithm Hash digest
SHA256 6cdb717c05a74104c5b68b9d5bc177253f910c38bee19cb3802a2343af0b7351
MD5 1bf7dac171f0224bab860f6c60857c5f
BLAKE2b-256 440ffcae578b6f39f3a6a2c7396efe0840297c41aa07efdb04e6a5113c8900c1

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 9d138bf03681daac33a6350183af6cc1a2141df96145893416647e625c5f7c32
MD5 2e51b363561214dbaf292bcd6e5028ee
BLAKE2b-256 58ac709cf7be4e1b3e4633d526ac025923a86acb46fd173441074e42a7e22de4

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gstlearn-1.5.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 6.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for gstlearn-1.5.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c1fbb45cdbd14abe0afc2c8ea160a836134f1fe4f8521959f8024044616848fb
MD5 9911086511a4325696b26b8822f87476
BLAKE2b-256 3b309aa4f01aa2ed732742e51b28a937a1e16b54e402d5e95fe736ef8a4a3410

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: gstlearn-1.5.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 4.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for gstlearn-1.5.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7af1ed8f3c0a8f43c0a7cf554f4812f43c28491cf4a66cd08fc070936635a683
MD5 de95867b1707628a08af319b5de38cb7
BLAKE2b-256 f23470563eca24acacd936fdbb7eb07f32f02f117235cf24b773cc0fd83f2464

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b071fc4ad2b7dfa0363fbe74d8da014cde1cda96a7a75fc5e6f617c74ca19abd
MD5 c29abe3673a187aa62da428311e917e3
BLAKE2b-256 39e5f6a99e5628d6b3bf0227039db175fa670989fce8854c396ca74eedd188b7

See more details on using hashes here.

File details

Details for the file gstlearn-1.5.1-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for gstlearn-1.5.1-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 1c2a19b8bd3861df22a829814a903c491d907c0cb78e3526be5e462c68524a80
MD5 7a93d7ce38fea036e9e17e55c6e97fdf
BLAKE2b-256 c2558790b250269f3559d2a5fbaf8baecfed4eed093c25f9c317c61ee742b1e3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page