Skip to main content

GSTools: A geostatistical toolbox.

Project description

Welcome to GSTools

GMD DOI PyPI version Conda Version Build Status Coverage Status Documentation Status Code style: black

GSTools-LOGO

Get in Touch!

GH-Discussions Slack-Swung Gitter-GSTools Email Twitter Follow

Youtube Tutorial on GSTools

GSTools Transform 22 tutorial

Purpose

GeoStatTools provides geostatistical tools for various purposes:

  • random field generation, including periodic boundaries
  • simple, ordinary, universal and external drift kriging
  • conditioned field generation
  • incompressible random vector field generation
  • (automated) variogram estimation and fitting
  • directional variogram estimation and modelling
  • data normalization and transformation
  • many readily provided and even user-defined covariance models
  • metric spatio-temporal modelling
  • plotting and exporting routines

Installation

conda

GSTools can be installed via conda on Linux, Mac, and Windows. Install the package by typing the following command in a command terminal:

conda install gstools

In case conda forge is not set up for your system yet, see the easy to follow instructions on conda forge. Using conda, the parallelized version of GSTools should be installed.

pip

GSTools can be installed via pip on Linux, Mac, and Windows. On Windows you can install WinPython to get Python and pip running. Install the package by typing the following command in a command terminal:

pip install gstools

To install the latest development version via pip, see the documentation. One thing to point out is that this way, the non-parallel version of GSTools is installed. In case you want the parallel version, follow these easy steps.

Citation

If you are using GSTools in your publication please cite our paper:

Müller, S., Schüler, L., Zech, A., and Heße, F.: GSTools v1.3: a toolbox for geostatistical modelling in Python, Geosci. Model Dev., 15, 3161–3182, https://doi.org/10.5194/gmd-15-3161-2022, 2022.

You can cite the Zenodo code publication of GSTools by:

Sebastian Müller & Lennart Schüler. GeoStat-Framework/GSTools. Zenodo. https://doi.org/10.5281/zenodo.1313628

If you want to cite a specific version, have a look at the Zenodo site.

Documentation for GSTools

You can find the documentation under geostat-framework.readthedocs.io.

Tutorials and Examples

The documentation also includes some tutorials, showing the most important use cases of GSTools, which are

The associated python scripts are provided in the examples folder.

Spatial Random Field Generation

The core of this library is the generation of spatial random fields. These fields are generated using the randomisation method, described by Heße et al. 2014.

Examples

Gaussian Covariance Model

This is an example of how to generate a 2 dimensional spatial random field with a gaussian covariance model.

import gstools as gs
# structured field with a size 100x100 and a grid-size of 1x1
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf((x, y), mesh_type='structured')
srf.plot()

Random field

GSTools also provides support for geographic coordinates. This works perfectly well with cartopy.

import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import gstools as gs
# define a structured field by latitude and longitude
lat = lon = range(-80, 81)
model = gs.Gaussian(latlon=True, len_scale=777, geo_scale=gs.KM_SCALE)
srf = gs.SRF(model, seed=12345)
field = srf.structured((lat, lon))
# Orthographic plotting with cartopy
ax = plt.subplot(projection=ccrs.Orthographic(-45, 45))
cont = ax.contourf(lon, lat, field, transform=ccrs.PlateCarree())
ax.coastlines()
ax.set_global()
plt.colorbar(cont)

lat-lon random field

A similar example but for a three dimensional field is exported to a VTK file, which can be visualized with ParaView or PyVista in Python:

import gstools as gs
# structured field with a size 100x100x100 and a grid-size of 1x1x1
x = y = z = range(100)
model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=(0.8, 0.4, 0.2))
srf = gs.SRF(model)
srf((x, y, z), mesh_type='structured')
srf.vtk_export('3d_field') # Save to a VTK file for ParaView

mesh = srf.to_pyvista() # Create a PyVista mesh for plotting in Python
mesh.contour(isosurfaces=8).plot()

3d Random field

Estimating and Fitting Variograms

The spatial structure of a field can be analyzed with the variogram, which contains the same information as the covariance function.

All covariance models can be used to fit given variogram data by a simple interface.

Example

This is an example of how to estimate the variogram of a 2 dimensional unstructured field and estimate the parameters of the covariance model again.

import numpy as np
import gstools as gs
# generate a synthetic field with an exponential model
x = np.random.RandomState(19970221).rand(1000) * 100.
y = np.random.RandomState(20011012).rand(1000) * 100.
model = gs.Exponential(dim=2, var=2, len_scale=8)
srf = gs.SRF(model, mean=0, seed=19970221)
field = srf((x, y))
# estimate the variogram of the field
bin_center, gamma = gs.vario_estimate((x, y), field)
# fit the variogram with a stable model. (no nugget fitted)
fit_model = gs.Stable(dim=2)
fit_model.fit_variogram(bin_center, gamma, nugget=False)
# output
ax = fit_model.plot(x_max=max(bin_center))
ax.scatter(bin_center, gamma)
print(fit_model)

Which gives:

Stable(dim=2, var=1.85, len_scale=7.42, nugget=0.0, anis=[1.0], angles=[0.0], alpha=1.09)

Variogram

Kriging and Conditioned Random Fields

An important part of geostatistics is Kriging and conditioning spatial random fields to measurements. With conditioned random fields, an ensemble of field realizations with their variability depending on the proximity of the measurements can be generated.

Example

For better visualization, we will condition a 1d field to a few "measurements", generate 100 realizations and plot them:

import numpy as np
import matplotlib.pyplot as plt
import gstools as gs

# conditions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]

# conditioned spatial random field class
model = gs.Gaussian(dim=1, var=0.5, len_scale=2)
krige = gs.krige.Ordinary(model, cond_pos, cond_val)
cond_srf = gs.CondSRF(krige)
# same output positions for all ensemble members
grid_pos = np.linspace(0.0, 15.0, 151)
cond_srf.set_pos(grid_pos)

# seeded ensemble generation
seed = gs.random.MasterRNG(20170519)
for i in range(100):
    field = cond_srf(seed=seed(), store=f"field_{i}")
    plt.plot(grid_pos, field, color="k", alpha=0.1)
plt.scatter(cond_pos, cond_val, color="k")
plt.show()

Conditioned

User Defined Covariance Models

One of the core-features of GSTools is the powerful CovModel class, which allows to easy define covariance models by the user.

Example

Here we re-implement the Gaussian covariance model by defining just a correlation function, which takes a non-dimensional distance h = r/l:

import numpy as np
import gstools as gs
# use CovModel as the base-class
class Gau(gs.CovModel):
    def cor(self, h):
        return np.exp(-h**2)

And that's it! With Gau you now have a fully working covariance model, which you could use for field generation or variogram fitting as shown above.

Have a look at the documentation for further information on incorporating optional parameters and optimizations.

Incompressible Vector Field Generation

Using the original Kraichnan method, incompressible random spatial vector fields can be generated.

Example

import numpy as np
import gstools as gs
x = np.arange(100)
y = np.arange(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, generator='VectorField', seed=19841203)
srf((x, y), mesh_type='structured')
srf.plot()

yielding

vector field

VTK/PyVista Export

After you have created a field, you may want to save it to file, so we provide a handy VTK export routine using the .vtk_export() or you could create a VTK/PyVista dataset for use in Python with to .to_pyvista() method:

import gstools as gs
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf((x, y), mesh_type='structured')
srf.vtk_export("field") # Saves to a VTK file
mesh = srf.to_pyvista() # Create a VTK/PyVista dataset in memory
mesh.plot()

Which gives a RectilinearGrid VTK file field.vtr or creates a PyVista mesh in memory for immediate 3D plotting in Python.

pyvista export

Requirements:

Optional

Contact

You can contact us via info@geostat-framework.org.

License

LGPLv3 © 2018-2024

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gstools-1.6.0.tar.gz (121.1 kB view details)

Uploaded Source

Built Distributions

gstools-1.6.0-cp312-cp312-win_amd64.whl (360.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

gstools-1.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

gstools-1.6.0-cp312-cp312-macosx_11_0_arm64.whl (372.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

gstools-1.6.0-cp312-cp312-macosx_10_9_x86_64.whl (389.5 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

gstools-1.6.0-cp311-cp311-win_amd64.whl (360.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

gstools-1.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

gstools-1.6.0-cp311-cp311-macosx_11_0_arm64.whl (369.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

gstools-1.6.0-cp311-cp311-macosx_10_9_x86_64.whl (386.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

gstools-1.6.0-cp310-cp310-win_amd64.whl (360.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

gstools-1.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

gstools-1.6.0-cp310-cp310-macosx_11_0_arm64.whl (369.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

gstools-1.6.0-cp310-cp310-macosx_10_9_x86_64.whl (386.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

gstools-1.6.0-cp39-cp39-win_amd64.whl (361.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

gstools-1.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

gstools-1.6.0-cp39-cp39-macosx_11_0_arm64.whl (370.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

gstools-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl (388.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

gstools-1.6.0-cp38-cp38-win_amd64.whl (361.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

gstools-1.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

gstools-1.6.0-cp38-cp38-macosx_11_0_arm64.whl (370.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

gstools-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl (387.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file gstools-1.6.0.tar.gz.

File metadata

  • Download URL: gstools-1.6.0.tar.gz
  • Upload date:
  • Size: 121.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for gstools-1.6.0.tar.gz
Algorithm Hash digest
SHA256 df80aad3023427c1390bdbcc004a2dd9e50da6f82c6d849574bb467f098242ce
MD5 9d94103757da650f07912b99af7fe0fd
BLAKE2b-256 f1cb804535d50b1376a5bfbef50af5e5cf785525ee03140a19a5daeb8295b596

See more details on using hashes here.

File details

Details for the file gstools-1.6.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: gstools-1.6.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 360.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for gstools-1.6.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 87159e3543a59733297a82d80c492e39d1a5aeeb1dad253b8f3c5605a80ac26b
MD5 036aef69327db2cae8a72780b0b0c92b
BLAKE2b-256 cb77270634458f083a4fff4d237593381643ca1f45e83354102c25c3e55d478d

See more details on using hashes here.

File details

Details for the file gstools-1.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2caaa745d5eeb6d306f7e9be40c52a254b75633607fa202b462083de8514766e
MD5 958fa8594f327c4367b2a8ece4da299b
BLAKE2b-256 4dd4c06ede86c8784c981e79864927ed033f2065af4af084f359bb7ffc569075

See more details on using hashes here.

File details

Details for the file gstools-1.6.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gstools-1.6.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e5820b078110b6c880fe8f6db09c454c47583be705118a5747677a917b7f82fc
MD5 468033341f33e228c2fb536176064ec1
BLAKE2b-256 3457fc9e1fb187efc34e6470c5057053ac3b158dda3451940b6894802574229a

See more details on using hashes here.

File details

Details for the file gstools-1.6.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8cab1dc2107754a629dd54f951046e5762c4f88950d0a565a67d806b176c5b57
MD5 e37bd88d9b8d2648fdda43517d764023
BLAKE2b-256 c5adbe5f1188c67f1d52fde85b9e98b26a74c2ec6f9ab6a15ea56137f1259c24

See more details on using hashes here.

File details

Details for the file gstools-1.6.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: gstools-1.6.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 360.3 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for gstools-1.6.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1085432a09691518139d165dba447b4e980dd003aefa1a140553dfaf70ce92fa
MD5 a1aa0a2e8f09b346fecb57d8139a6062
BLAKE2b-256 531de8b2532bf5d6bfbf705ec5941f87c55d4a7350225b397503a1b83d992762

See more details on using hashes here.

File details

Details for the file gstools-1.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fff329fefb4713268611f021dfaecbda5453d15890073108be57ed638f00c30b
MD5 95923c5249e9dd167331e32ef11f052b
BLAKE2b-256 69a22f93a854cd2292561deb2d2dd7007bd1d1c086aaee9e2130ccdda08e6789

See more details on using hashes here.

File details

Details for the file gstools-1.6.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gstools-1.6.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3965a591cec53cf876dfc3777467a767946a980a88aa662c922eac4cb9fa59f1
MD5 50a1831cf00c21c2cf48b1aaa2ec5df6
BLAKE2b-256 65626baef59245f0903809e4df4610743a9a3872fb226b7d15076e336181434a

See more details on using hashes here.

File details

Details for the file gstools-1.6.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ba741e2316e5f5c4e744f556f364d40d29c5c6d2e71246901b032fb7b7f23fef
MD5 4627135ac67fcac3ae81230951a7956e
BLAKE2b-256 88ae9b2a7228f235591b9dcd49eb8bc0a0a7926245e5379536097bee8455c07b

See more details on using hashes here.

File details

Details for the file gstools-1.6.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: gstools-1.6.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 360.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for gstools-1.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 630e423e26f0b9558fcd1769a08fa992ba88dd945237ad0710493d2b3647d078
MD5 53220614741084bff04299c113946cea
BLAKE2b-256 d3a182702d46b95a8d0fe0fbd49fe9bd718e892bcd0967e49a2aabd1e0ce82a0

See more details on using hashes here.

File details

Details for the file gstools-1.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8748dd8d43c053122de652efb74635327f4a945a537afa0ee2e765e415c72f04
MD5 0f3418907edf907fcd2e2da925aab813
BLAKE2b-256 21e8630f616dd3d9cf72688fb81ba842a3a849004aa6e69b8309e17a46806c3e

See more details on using hashes here.

File details

Details for the file gstools-1.6.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gstools-1.6.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 50f3ee9af837ed4a2e08f182f8434219826ab93d94e13f5302c2ff7b5612f4af
MD5 11e98b6d83a2e287c066779fd29a388d
BLAKE2b-256 3f09549247ef74020d9cced146ff646d823da34023cbf8a5895a6eaeddfbe3f9

See more details on using hashes here.

File details

Details for the file gstools-1.6.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dd8f8ee9ef90f80076fca480273dc1fecfc832a51a4474b61f0bd1c1e7635872
MD5 7e807b90fc08445642c72481353dbf31
BLAKE2b-256 367ef65681e48e9a29f7797961bb86c34a42d8711f90269ba646c1aa66d374a5

See more details on using hashes here.

File details

Details for the file gstools-1.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gstools-1.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 361.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for gstools-1.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ef17a92ffc0a20fbc61978807f38e4407dff12758d923059927b1d88406ba564
MD5 03b44b03a88790087ffb645bfa4abf6b
BLAKE2b-256 17ae0f4493fd81e487b094a9ba3f96b6798009440bd29ec5e6da29a8aed4bd82

See more details on using hashes here.

File details

Details for the file gstools-1.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5942aeaa7c62d5c2b1535dc52f8e71fa8369374c6c94c14d3f8e5de72d1358a1
MD5 14e4895a2b4c0c01e7bb0df56d189c89
BLAKE2b-256 7221de17afa92a804a1f26839400a5e13b103d00a49b291ad4d310510c9773f5

See more details on using hashes here.

File details

Details for the file gstools-1.6.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gstools-1.6.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 36b669ec8d198c69577f6230724b88ed9f64ab55b7d0a0cf982fbd8cc3a41ad7
MD5 81b569cc397f43630ccd685fbfd8b25e
BLAKE2b-256 1512fe73f425a90c4404fb941cb1192235b8626f55271470af0980030215b34c

See more details on using hashes here.

File details

Details for the file gstools-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6828fd91a0aa65ef676b4472626f35115d54c86642d1680f5512bdc7f8ec3a97
MD5 2c30f4517efc7d6fbe89d926f5ca98cb
BLAKE2b-256 e2ca7b8478291b26bf49f60838fefdff651fac71b60732113a81c7afa4758891

See more details on using hashes here.

File details

Details for the file gstools-1.6.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: gstools-1.6.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 361.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for gstools-1.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0358013ad0fce16f943642bd1d4750c16799fb889e5e59985e9e71ab75286e7e
MD5 2d371ee210ceaf16ba26237e54f07338
BLAKE2b-256 7a1e2a8686dd5c04520e7c83779c847826a3d12fd74dc51d7e4eafc4037c1794

See more details on using hashes here.

File details

Details for the file gstools-1.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 67d94769fdb89df53d6e7dd1952a95858c08cf15987f9152d4bf851c19ce6b4a
MD5 ec429d89c9a1fa78498af3bd1f224f59
BLAKE2b-256 06acc45d6346381e980cb5339f29a16f18c516f5df9ba0e555903b7b1e048384

See more details on using hashes here.

File details

Details for the file gstools-1.6.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gstools-1.6.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e45aad48dc4f6c08f40f9832e9d71bb4c4d05e879f7b9d94cd83766c99dc2e40
MD5 aec21384d500b7bc1395d34580840fed
BLAKE2b-256 054fc57fc3749ff89f8d4edb20c4e0ed5d384c13cb215c71089530776d940a59

See more details on using hashes here.

File details

Details for the file gstools-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9125d6a7b1e36a62ca3d9aa7b074722f02e7a7d71934179c09c74bda39a659e7
MD5 7ee87c546a0d3eaa88f4ab37859730cc
BLAKE2b-256 e156e6d1de350f40208bff355794b43053812617801dd4fdb7c7660720a95190

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page