Skip to main content

GSTools: A geostatistical toolbox.

Project description

Welcome to GSTools

GMD DOI PyPI version Conda Version Build Status Coverage Status Documentation Status Code style: black

GSTools-LOGO

Get in Touch!

GH-Discussions Slack-Swung Gitter-GSTools Email Twitter Follow

Youtube Tutorial on GSTools

GSTools Transform 22 tutorial

Purpose

GSTools provides geostatistical tools for various purposes:

  • random field generation, including periodic boundaries
  • simple, ordinary, universal and external drift kriging
  • conditioned field generation
  • incompressible random vector field generation
  • (automated) variogram estimation and fitting
  • directional variogram estimation and modelling
  • data normalization and transformation
  • many readily provided and even user-defined covariance models
  • metric spatio-temporal modelling
  • plotting and exporting routines

Installation

conda

GSTools can be installed via conda on Linux, Mac, and Windows. Install the package by typing the following command in a command terminal:

conda install gstools

In case conda forge is not set up for your system yet, see the easy to follow instructions on conda forge. Using conda, the parallelized version of GSTools should be installed.

pip

GSTools can be installed via pip on Linux, Mac, and Windows. On Windows you can install WinPython to get Python and pip running. Install the package by typing the following command in a command terminal:

pip install gstools

To install the latest development version via pip, see the documentation. One thing to point out is that this way, the non-parallel version of GSTools is installed. In case you want the parallel version, follow these easy steps.

Citation

If you are using GSTools in your publication please cite our paper:

Müller, S., Schüler, L., Zech, A., and Heße, F.: GSTools v1.3: a toolbox for geostatistical modelling in Python, Geosci. Model Dev., 15, 3161–3182, https://doi.org/10.5194/gmd-15-3161-2022, 2022.

You can cite the Zenodo code publication of GSTools by:

Sebastian Müller & Lennart Schüler. GeoStat-Framework/GSTools. Zenodo. https://doi.org/10.5281/zenodo.1313628

If you want to cite a specific version, have a look at the Zenodo site.

Documentation for GSTools

You can find the documentation under geostat-framework.readthedocs.io.

Tutorials and Examples

The documentation also includes some tutorials, showing the most important use cases of GSTools, which are

The associated python scripts are provided in the examples folder.

Spatial Random Field Generation

The core of this library is the generation of spatial random fields. These fields are generated using the randomisation method, described by Heße et al. 2014.

Examples

Gaussian Covariance Model

This is an example of how to generate a 2 dimensional spatial random field with a gaussian covariance model.

import gstools as gs
# structured field with a size 100x100 and a grid-size of 1x1
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf((x, y), mesh_type='structured')
srf.plot()

Random field

GSTools also provides support for geographic coordinates. This works perfectly well with cartopy.

import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import gstools as gs
# define a structured field by latitude and longitude
lat = lon = range(-80, 81)
model = gs.Gaussian(latlon=True, len_scale=777, geo_scale=gs.KM_SCALE)
srf = gs.SRF(model, seed=12345)
field = srf.structured((lat, lon))
# Orthographic plotting with cartopy
ax = plt.subplot(projection=ccrs.Orthographic(-45, 45))
cont = ax.contourf(lon, lat, field, transform=ccrs.PlateCarree())
ax.coastlines()
ax.set_global()
plt.colorbar(cont)

lat-lon random field

A similar example but for a three dimensional field is exported to a VTK file, which can be visualized with ParaView or PyVista in Python:

import gstools as gs
# structured field with a size 100x100x100 and a grid-size of 1x1x1
x = y = z = range(100)
model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=(0.8, 0.4, 0.2))
srf = gs.SRF(model)
srf((x, y, z), mesh_type='structured')
srf.vtk_export('3d_field') # Save to a VTK file for ParaView

mesh = srf.to_pyvista() # Create a PyVista mesh for plotting in Python
mesh.contour(isosurfaces=8).plot()

3d Random field

Estimating and Fitting Variograms

The spatial structure of a field can be analyzed with the variogram, which contains the same information as the covariance function.

All covariance models can be used to fit given variogram data by a simple interface.

Example

This is an example of how to estimate the variogram of a 2 dimensional unstructured field and estimate the parameters of the covariance model again.

import numpy as np
import gstools as gs
# generate a synthetic field with an exponential model
x = np.random.RandomState(19970221).rand(1000) * 100.
y = np.random.RandomState(20011012).rand(1000) * 100.
model = gs.Exponential(dim=2, var=2, len_scale=8)
srf = gs.SRF(model, mean=0, seed=19970221)
field = srf((x, y))
# estimate the variogram of the field
bin_center, gamma = gs.vario_estimate((x, y), field)
# fit the variogram with a stable model. (no nugget fitted)
fit_model = gs.Stable(dim=2)
fit_model.fit_variogram(bin_center, gamma, nugget=False)
# output
ax = fit_model.plot(x_max=max(bin_center))
ax.scatter(bin_center, gamma)
print(fit_model)

Which gives:

Stable(dim=2, var=1.85, len_scale=7.42, nugget=0.0, anis=[1.0], angles=[0.0], alpha=1.09)

Variogram

Kriging and Conditioned Random Fields

An important part of geostatistics is Kriging and conditioning spatial random fields to measurements. With conditioned random fields, an ensemble of field realizations with their variability depending on the proximity of the measurements can be generated.

Example

For better visualization, we will condition a 1d field to a few "measurements", generate 100 realizations and plot them:

import numpy as np
import matplotlib.pyplot as plt
import gstools as gs

# conditions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]

# conditioned spatial random field class
model = gs.Gaussian(dim=1, var=0.5, len_scale=2)
krige = gs.krige.Ordinary(model, cond_pos, cond_val)
cond_srf = gs.CondSRF(krige)
# same output positions for all ensemble members
grid_pos = np.linspace(0.0, 15.0, 151)
cond_srf.set_pos(grid_pos)

# seeded ensemble generation
seed = gs.random.MasterRNG(20170519)
for i in range(100):
    field = cond_srf(seed=seed(), store=f"field_{i}")
    plt.plot(grid_pos, field, color="k", alpha=0.1)
plt.scatter(cond_pos, cond_val, color="k")
plt.show()

Conditioned

User Defined Covariance Models

One of the core-features of GSTools is the powerful CovModel class, which allows to easy define covariance models by the user.

Example

Here we re-implement the Gaussian covariance model by defining just a correlation function, which takes a non-dimensional distance h = r/l:

import numpy as np
import gstools as gs
# use CovModel as the base-class
class Gau(gs.CovModel):
    def cor(self, h):
        return np.exp(-h**2)

And that's it! With Gau you now have a fully working covariance model, which you could use for field generation or variogram fitting as shown above.

Have a look at the documentation for further information on incorporating optional parameters and optimizations.

Incompressible Vector Field Generation

Using the original Kraichnan method, incompressible random spatial vector fields can be generated.

Example

import numpy as np
import gstools as gs
x = np.arange(100)
y = np.arange(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, generator='VectorField', seed=19841203)
srf((x, y), mesh_type='structured')
srf.plot()

yielding

vector field

VTK/PyVista Export

After you have created a field, you may want to save it to file, so we provide a handy VTK export routine using the .vtk_export() or you could create a VTK/PyVista dataset for use in Python with to .to_pyvista() method:

import gstools as gs
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf((x, y), mesh_type='structured')
srf.vtk_export("field") # Saves to a VTK file
mesh = srf.to_pyvista() # Create a VTK/PyVista dataset in memory
mesh.plot()

Which gives a RectilinearGrid VTK file field.vtr or creates a PyVista mesh in memory for immediate 3D plotting in Python.

pyvista export

Requirements:

Optional

Contact

You can contact us via info@geostat-framework.org.

License

LGPLv3 © 2018-2025

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gstools-1.6.1.tar.gz (121.2 kB view details)

Uploaded Source

Built Distributions

gstools-1.6.1-cp313-cp313-win_amd64.whl (359.7 kB view details)

Uploaded CPython 3.13 Windows x86-64

gstools-1.6.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

gstools-1.6.1-cp313-cp313-macosx_11_0_arm64.whl (369.3 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

gstools-1.6.1-cp313-cp313-macosx_10_13_x86_64.whl (386.5 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

gstools-1.6.1-cp312-cp312-win_amd64.whl (360.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

gstools-1.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

gstools-1.6.1-cp312-cp312-macosx_11_0_arm64.whl (372.6 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

gstools-1.6.1-cp312-cp312-macosx_10_13_x86_64.whl (389.4 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

gstools-1.6.1-cp311-cp311-win_amd64.whl (360.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

gstools-1.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

gstools-1.6.1-cp311-cp311-macosx_11_0_arm64.whl (369.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

gstools-1.6.1-cp311-cp311-macosx_10_9_x86_64.whl (386.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

gstools-1.6.1-cp310-cp310-win_amd64.whl (359.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

gstools-1.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

gstools-1.6.1-cp310-cp310-macosx_11_0_arm64.whl (369.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

gstools-1.6.1-cp310-cp310-macosx_10_9_x86_64.whl (386.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

gstools-1.6.1-cp39-cp39-win_amd64.whl (361.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

gstools-1.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

gstools-1.6.1-cp39-cp39-macosx_11_0_arm64.whl (371.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

gstools-1.6.1-cp39-cp39-macosx_10_9_x86_64.whl (388.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

gstools-1.6.1-cp38-cp38-win_amd64.whl (361.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

gstools-1.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

gstools-1.6.1-cp38-cp38-macosx_11_0_arm64.whl (370.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

gstools-1.6.1-cp38-cp38-macosx_10_9_x86_64.whl (387.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file gstools-1.6.1.tar.gz.

File metadata

  • Download URL: gstools-1.6.1.tar.gz
  • Upload date:
  • Size: 121.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for gstools-1.6.1.tar.gz
Algorithm Hash digest
SHA256 12e822136fcfec3b6d06d1a261428c1360ffeab766c6da3a8ff2efd08ae363d7
MD5 8e1ae2bd1f4ee6f743b3dec2800f2e47
BLAKE2b-256 31100c4326699ad42486bf5ce0e4ab29378994cce3bb23564bd9cf1abdccc10d

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: gstools-1.6.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 359.7 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for gstools-1.6.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 dd92bf4808116dfaba006f7563a633bbdf50ee4bfd7e5a3c6b4adb64223defb6
MD5 2e55593ed7d64f8712f24eb4a33eb62c
BLAKE2b-256 1c8a1712561172c2817c80b43bf729c7b364ca3aae47bf7589e71081a5d60d90

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e1d1af2228345198c3c763aa1349e18cb1feb384cbff21904baaf041ed60fd62
MD5 c1fc4c5d90f786b1b051ffb15aa19e0a
BLAKE2b-256 a077507e4f715af6555ffe79f2c0746e252be38f22c2d22cd177bea653ac087a

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gstools-1.6.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5404eae113972a59641c0645eeb90e0eedf2ac65757115c18e42226b1097530e
MD5 6aa98ebae16997ad17f72495658b7bd1
BLAKE2b-256 9fe48238bfcdfdea7e9e8d642d53ab44db96c0ed6bd25d3460d4f58cc268d571

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9edec2ae49ef65688f31cb5d9dab6761a749bfe286e6d90be38623354b884842
MD5 f966b1a3b2b015270ee495ae206ed5b7
BLAKE2b-256 8b58dd8a23ae41f41e48164fe8cef5be562ba113ea8f44c4fbc8be2c9d13fbe4

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: gstools-1.6.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 360.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for gstools-1.6.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 34c74dc8bf0b2148d9683547804a389c32e12ba0c0ee31fdb066332c7d8722ae
MD5 e8ced7aef6a680ec672c74e29748d1ee
BLAKE2b-256 60a5f9c2bdca24acf12d786894e749e8e39d0eb8921fb93d0977ab30e03413c6

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 36bc6e49c82f37038d0188641d5d7ba8d9c203ae48e2d25423bc25b80ccebd48
MD5 3393814391964002abcee04ed80ecd8a
BLAKE2b-256 144c294208cf325111b20e41a590439850b9f7feb90eb315877d76ec5a2f5f50

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gstools-1.6.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 060fb20d1f03e4477d56e7530fa849b00fcbe01e81dbc3bf1f94e6721ca054db
MD5 b13e1d986d61c7cee9367beec97e2b56
BLAKE2b-256 d0dd9a4d92785c96ba69647795978c6c9fb3b1b321e38f251ee2249a92f01a14

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9ccc06a4a07ef2263bbca768bac5af5ea0c4db9be544c961be6c4099354b98bc
MD5 5368efd26d82dc03100302e40dc472b3
BLAKE2b-256 fe7976e5e85e79781050c5f9e0f4bb8c8b642f5752e91044b9c50d3b77d382c5

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: gstools-1.6.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 360.3 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for gstools-1.6.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 63541f36ba713fff5ceebeb4837e3caa9bf5a41c6c9f416b1d356c0e2933c267
MD5 b300b8c626439fbb4987a46cd7a441e6
BLAKE2b-256 aef155c21ee0b545554f910a8d5c85ae91ef42f4c5972d8425c6c31a97eb7e4f

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0e256768dcb5b98443502bd27181f7b4d67d64a80f1179e938261e19e82e87d1
MD5 64d48c5c13ccf4648da75d8b481a07aa
BLAKE2b-256 5fd16c0d3390878e744483cb0b366c1610ec01ae21c844f1fcef03d578e859ba

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gstools-1.6.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6b4520d7f53e64ba4da219fe4b4187d5ac2389a5e46382b14a1991030d945fa3
MD5 f842b84d699b25640c009c0e32040c1f
BLAKE2b-256 e86e72081490c9c9c97c0725c2b156df64e86f9e5e8cdc2467626b3c8c4f9f8a

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bebe2804124472f973fe4665d2ae169b571b9bd643b747655b8c544024a50eb9
MD5 daf6804ff0f06d52af308482c60f6e08
BLAKE2b-256 be43210a1c34a98a076c77dc3e7da95fe781d66770c8ffc5e78c34c0aa2991ed

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: gstools-1.6.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 359.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for gstools-1.6.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3cfdfb6b25a9681df15adf2dec8539ad9918e6d4ba83de44ead15a0e31b215ea
MD5 4b558699829c912fc83b28d809a7fdb6
BLAKE2b-256 4cac5e6933b36f71821a62338b22e6d8f30efa2310442d5ca016533b9fbf72aa

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8988c651bffd445ada3fce5e10f18d8facac3d6eab46e322320a1a2a698c0749
MD5 9fefa873bf79345ae8cb07565d870952
BLAKE2b-256 1bb041395af87348ee02cb8e367ac091c82413eea4233dd8be935a3f381be1e7

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gstools-1.6.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 06a1eecadb3791fb5dad7a4e0b5c875d92970dbff927609ef8cbfd5fb16d6c56
MD5 05dcd0a03915ae4ca0fff1badbb5e3a3
BLAKE2b-256 b0a7acc8c8597f1a83e8fa6587c177797cff05e55baee6c4058b32cc60392b1d

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 29537243d87af4030d730b7fbe1cbb6c62d24ec3a44b022934d6e3606ca32d75
MD5 2e92bd245e621b0bb69e67b8be1e36be
BLAKE2b-256 26d5f00f3d2a172d6c6f6b13697517fc1ecbb787500b2eb2be4b0e577b5f1094

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gstools-1.6.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 361.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for gstools-1.6.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 569967be12fdbeae18dd9bf1d22edcad265d565291c284175c9ec651dfa8e370
MD5 d2aee342738ba53002d470dfaa83df42
BLAKE2b-256 d919c2d40ff620bea56e63b645e93278485bc853f8a9077f5b71af45bcc66ba4

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ddfdae2543da48360e198959ac29159f51862ed6f058fda7ef313cde3af944b
MD5 9d78ce54ed896d62d42c46e94fb7a77b
BLAKE2b-256 78e47be9f2671a722cca6b9afe7ac2c960d3a3197c1f4bec5683743468611792

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gstools-1.6.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f7a002dc8169257b3257a7609f6038684dadd1050f81a6291745fa66fe1440d9
MD5 8e60940cb15df8b3c2df87b28459d91b
BLAKE2b-256 093309e2492fa477b3ce11005a504ccc1a978d8e4b638b0fca008aa3d14bb5c3

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 99e141b9dcfcbf0a3e27641e1fabbf0b1e09c58349e95d72c370b546d7633fe6
MD5 0160becb23a6d8b867fa1d0e569708de
BLAKE2b-256 a0aacb80a88f6b0f654a675ac49e7ee50cfb9ce0b0ceff40b0b89f694f0de27c

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: gstools-1.6.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 361.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for gstools-1.6.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 429a175c2d5ebe0318ed75417d64a65d39c0b82ba9bf3c647d0dd718ca899a30
MD5 9f485812f387918d7e291818d49c1be9
BLAKE2b-256 2ba060473d6bced2a89a4a115142afb19dce4630885e5663d19a7cfc873ef1a2

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 11f290df733712ba3059b22c1a13483973280092c712d2060031c33320154b84
MD5 cbbbae8cfa32fe1e9318e10bcf6f5e6e
BLAKE2b-256 9d10431320683838fb104d3d6aa3f28ff38e5503c5b4063879c8542c3d149f29

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gstools-1.6.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8293dd4464e8d9b19f0924152970e9f6b035d5e3b4109cfdff5c99275a8691b3
MD5 218fffbb2d898711647f8857c1cc9701
BLAKE2b-256 fb145b74462c6118e19515199d3fd7979646e42ef17082c2d04e4019740269c9

See more details on using hashes here.

File details

Details for the file gstools-1.6.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gstools-1.6.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8148d4f61ac0fcd8511753e9d53e8b19485a7c7e822488ac032ea6dbbaed4170
MD5 abfa05d755833beb626745b38e14b2cb
BLAKE2b-256 d42d689bc1d56e40b6d7097dc3b490e0393e5e626d42ace512f04246c74363a5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page