Package to easily wrangle GTFS files geospatially.
Project description
GTFS functions
This package allows you to create various layers directly from the GTFS and visualize the results in the most straightforward way possible.
Update March 2023:
- Removed dependency with partridge. As much as we love this package and think it is absolutely great, removing a dependency gives us more control and keeps this package from failing whenever something changes in
partridge
. - We treat the GTFS as a class, where each file is a property. See examples below to find out how to work with it. We hope this simplifies your code.
- Fixed and enhanced segment cutting. Shout out to Mattijs De Paepe
- Support to identify route patterns!! Check it out using
feed.routes_patterns
. Shout out to Tobias Bartsch - The rest should stay the same.
Warning!
Make sure stop_times.txt
has no Null
values in the columns arrival_time
and departure_time
. If this is not the case, some functions on this package might fail.
Table of contents
- Installation
- GTFS parsing
- Stop frequencies
- Line frequencies
- Cut in Bus segments
- Speeds
- Segment frequencies
- Mapping the results
- Other plots
Python version
The package requires python>=3.8
. You can create a new environment with this version using conda:
conda create -n new-env python=3.8
Installation
You can install the package running the following in your console:
pip install gtfs_functions==2.0.3
Import the package in your script/notebook
from gtfs_functions import Feed, map_gdf
GTFS Import
Now you can interact with your GTFS with the class Feed
. Take a look at the class with ?Feed
to check what arguments you can specify.
gtfs_path = 'data/sfmta.zip'
# It also works with URL's
gtfs_path = 'https://transitfeeds.com/p/sfmta/60/latest/download'
feed = Feed(gtfs_path, time_windows=[0, 6, 10, 12, 16, 19, 24])
routes = feed.routes
routes.head(2)
route_id | agency_id | route_short_name | route_long_name | route_desc | route_type | route_url | route_color | route_text_color | |
---|---|---|---|---|---|---|---|---|---|
0 | 15761 | SFMTA | 1 | CALIFORNIA | 3 | https://SFMTA.com/1 | |||
1 | 15766 | SFMTA | 5 | FULTON | 3 | https://SFMTA.com/5 |
stops = feed.stops
stops.head(2)
stop_id | stop_code | stop_name | stop_desc | zone_id | stop_url | geometry | |
---|---|---|---|---|---|---|---|
0 | 390 | 10390 | 19th Avenue & Holloway St | POINT (-122.47510 37.72119) | |||
1 | 3016 | 13016 | 3rd St & 4th St | POINT (-122.38979 37.77262) |
stop_times = feed.stop_times
stop_times.head(2)
trip_id | arrival_time | departure_time | stop_id | stop_sequence | stop_headsign | pickup_type | drop_off_type | shape_dist_traveled | route_id | service_id | direction_id | shape_id | stop_code | stop_name | stop_desc | zone_id | stop_url | geometry | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 9413147 | 81840.0 | 81840.0 | 4015 | 1 | NaN | NaN | 15761 | 1 | 0 | 179928 | 14015 | Clay St & Drumm St | POINT (-122.39682 37.79544) | |||||
1 | 9413147 | 81902.0 | 81902.0 | 6294 | 2 | NaN | NaN | 15761 | 1 | 0 | 179928 | 16294 | Sacramento St & Davis St | POINT (-122.39761 37.79450) |
trips = feed.trips
trips.head(2)
trip_id | route_id | service_id | direction_id | shape_id | |
---|---|---|---|---|---|
0 | 9547346 | 15804 | 1 | 0 | 180140 |
1 | 9547345 | 15804 | 1 | 0 | 180140 |
shapes = feed.shapes
shapes.head(2)
shape_id | geometry | |
---|---|---|
0 | 179928 | LINESTRING (-122.39697 37.79544, -122.39678 37... |
1 | 179929 | LINESTRING (-122.39697 37.79544, -122.39678 37... |
Stop frequencies
Returns a geodataframe with the frequency for each combination of stop
, time of day
and direction
. Each row with a Point geometry. The user can optionally specify cutoffs
as a list in case the default is not good. These cutoffs
should be specified at the moment of reading the Feed
class. These cutoffs
are the times of days to use as aggregation.
time_windows = [0, 6, 9, 15.5, 19, 22, 24]
feed = Feed(gtfs_path, time_windows=time_windows)
stop_freq = feed.stops_freq
stop_freq.head(2)
stop_id | dir_id | window | ntrips | min_per_trip | stop_name | geometry | |
---|---|---|---|---|---|---|---|
8157 | 5763 | Inbound | 0:00-6:00 | 1 | 360 | Noriega St & 48th Ave | POINT (-122.50785 37.75293) |
13102 | 7982 | Outbound | 0:00-6:00 | 1 | 360 | Moscow St & RussiaAvet | POINT (-122.42996 37.71804) |
9539 | 6113 | Inbound | 0:00-6:00 | 1 | 360 | Portola Dr & Laguna Honda Blvd | POINT (-122.45526 37.74310) |
12654 | 7719 | Inbound | 0:00-6:00 | 1 | 360 | Middle Point & Acacia | POINT (-122.37952 37.73707) |
9553 | 6116 | Inbound | 0:00-6:00 | 1 | 360 | Portola Dr & San Pablo Ave | POINT (-122.46107 37.74040) |
Line frequencies
Returns a geodataframe with the frequency for each combination of line
, time of day
and direction
. Each row with a LineString geometry. The user can optionally specify cutoffs
as a list in case the default is not good. These cutoffs
should be specified at the moment of reading the Feed
class. These cutoffs
are the times of days to use as aggregation.
line_freq = feed.lines_freq
line_freq.head()
route_id | route_name | dir_id | window | min_per_trip | ntrips | geometry | |
---|---|---|---|---|---|---|---|
376 | 15808 | 44 O'SHAUGHNESSY | Inbound | 0:00-6:00 | 360 | 1 | LINESTRING (-122.46459 37.78500, -122.46352 37... |
378 | 15808 | 44 O'SHAUGHNESSY | Inbound | 0:00-6:00 | 360 | 1 | LINESTRING (-122.43416 37.73355, -122.43299 37... |
242 | 15787 | 25 TREASURE ISLAND | Inbound | 0:00-6:00 | 360 | 1 | LINESTRING (-122.39611 37.79013, -122.39603 37... |
451 | 15814 | 54 FELTON | Inbound | 0:00-6:00 | 360 | 1 | LINESTRING (-122.38845 37.73994, -122.38844 37... |
241 | 15787 | 25 TREASURE ISLAND | Inbound | 0:00-6:00 | 360 | 1 | LINESTRING (-122.39542 37.78978, -122.39563 37... |
Bus segments
Returns a geodataframe where each segment is a row and has a LineString geometry.
segments_gdf = feed.segments
segments_gdf.head(2)
route_id | direction_id | stop_sequence | start_stop_name | end_stop_name | start_stop_id | end_stop_id | segment_id | shape_id | geometry | distance_m | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15761 | 0 | 1 | Clay St & Drumm St | Sacramento St & Davis St | 4015 | 6294 | 4015-6294 | 179928 | LINESTRING (-122.39697 37.79544, -122.39678 37... | 205.281653 |
1 | 15761 | 0 | 2 | Sacramento St & Davis St | Sacramento St & Battery St | 6294 | 6290 | 6294-6290 | 179928 | LINESTRING (-122.39761 37.79446, -122.39781 37... | 238.047505 |
Scheduled Speeds
Returns a geodataframe with the speed_kmh
for each combination of route
, segment
, time of day
and direction
. Each row with a LineString geometry. The user can optionally specify cutoffs
as explained in previous sections.
# Cutoffs to make get hourly values
speeds = feed.avg_speeds
speeds.head(1)
route_id | route_name | direction_id | segment_id | window | speed_kmh | start_stop_id | start_stop_name | end_stop_id | end_stop_name | distance_m | stop_sequence | runtime_sec | segment_max_speed_kmh | geometry | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15761 | 1 CALIFORNIA | Inbound | 4015-6294 | 10:00-11:00 | 12.0 | 4015 | Clay St & Drumm St | 6294 | Sacramento St & Davis St | 205.281653 | 1 | 61.9 | 12.0 | LINESTRING (-122.39697 37.79544, -122.39678 37... |
Segment frequencies
segments_freq = feed.segments_freq
seg_freq.head(2)
route_id | route_name | direction_id | segment_name | window | min_per_trip | ntrips | start_stop_id | start_stop_name | end_stop_name | geometry | |
---|---|---|---|---|---|---|---|---|---|---|---|
23191 | ALL_LINES | All lines | NA | 3628-3622 | 0:00-6:00 | 360 | 1 | 3628 | Alemany Blvd & St Charles Ave | Alemany Blvd & Arch St | LINESTRING (-122.46949 37.71045, -122.46941 37... |
6160 | 15787 | 25 TREASURE ISLAND | Inbound | 7948-8017 | 0:00-6:00 | 360 | 1 | 7948 | Transit Center Bay 29 | Shoreline Access Road | LINESTRING (-122.39611 37.79013, -122.39603 37... |
Map your work
Stop frequencies
# Stops
condition_dir = stop_freq.dir_id == 'Inbound'
condition_window = stop_freq.window == '6:00-9:00'
gdf = stop_freq.loc[(condition_dir & condition_window),:].reset_index()
gtfs.map_gdf(gdf = gdf,
variable = 'ntrips',
colors = ["#d13870", "#e895b3" ,'#55d992', '#3ab071', '#0e8955','#066a40'],
tooltip_var = ['min_per_trip'] ,
tooltip_labels = ['Frequency: '],
breaks = [10, 20, 30, 40, 120, 200])
Line frequencies
# Line frequencies
condition_dir = line_freq.direction_id == 'Inbound'
condition_window = line_freq.window == '6:00-9:00'
gdf = line_freq.loc[(condition_dir & condition_window),:].reset_index()
gtfs.map_gdf(gdf = gdf,
variable = 'ntrips',
colors = ["#d13870", "#e895b3" ,'#55d992', '#3ab071', '#0e8955','#066a40'],
tooltip_var = ['route_name'] ,
tooltip_labels = ['Route: '],
breaks = [5, 10, 20, 50])
Speeds
If you are looking to visualize data at the segment level for all lines I recommend you go with something more powerful like kepler.gl (AKA my favorite data viz library). For example, to check the scheduled speeds per segment:
# Speeds
import keplergl as kp
m = kp.KeplerGl(data=dict(data=speeds, name='Speed Lines'), height=400)
m
Segment frequencies
# Segment frequencies
import keplergl as kp
m = kp.KeplerGl(data=dict(data=seg_freq, name='Segment frequency'), height=400)
m
Other plots
Histogram
# Histogram
import plotly.express as px
px.histogram(
stop_freq.loc[stop_freq.min_per_trip<50],
x='frequency',
title='Stop frequencies',
template='simple_white',
nbins =20)
Heatmap
# Heatmap
import plotly.graph_objects as go
dir_0 = speeds.loc[(speeds.dir_id=='Inbound')&(speeds.route_name=='1 CALIFORNIA')].sort_values(by='stop_sequence')
dir_0['hour'] = dir_0.window.apply(lambda x: int(x.split(':')[0]))
dir_0.sort_values(by='hour', ascending=True, inplace=True)
fig = go.Figure(data=go.Heatmap(
z=dir_0.speed_kmh,
y=dir_0.start_stop_name,
x=dir_0.window,
hoverongaps = False,
colorscale=px.colors.colorbrewer.RdYlBu,
reversescale=False
))
fig.update_yaxes(title_text='Stop', autorange='reversed')
fig.update_xaxes(title_text='Hour of day', side='top')
fig.update_layout(showlegend=False, height=600, width=1000,
title='Speed heatmap per direction and hour of the day')
fig.show()
Line chart
by_hour = speeds.pivot_table('speed_kmh', index = ['window'], aggfunc = ['mean','std'] ).reset_index()
by_hour.columns = ['_'.join(col).strip() for col in by_hour.columns.values]
by_hour['hour'] = by_hour.window_.apply(lambda x: int(x.split(':')[0]))
by_hour.sort_values(by='hour', ascending=True, inplace=True)
# Scatter
fig = px.line(by_hour,
x='window_',
y='mean_speed_kmh',
template='simple_white',
#error_y = 'std_speed_kmh'
)
fig.update_yaxes(rangemode='tozero')
fig.show()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file gtfs_functions-2.0.4.tar.gz
.
File metadata
- Download URL: gtfs_functions-2.0.4.tar.gz
- Upload date:
- Size: 959.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c0ac81124555f0c76b82a614a0d632f66db1e89f34de48811733c12a8aedb202 |
|
MD5 | 148d5abdd118e786eb04bc30df1261a0 |
|
BLAKE2b-256 | cd37da0427fda4622d5530a13a81cf74801ef95b21707358870fac20f4370233 |
File details
Details for the file gtfs_functions-2.0.4-py3-none-any.whl
.
File metadata
- Download URL: gtfs_functions-2.0.4-py3-none-any.whl
- Upload date:
- Size: 17.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3efdc2115afb1958a4dca81b6aa0e26fd215ae1ee7fdc41b78d5cb2da8c13327 |
|
MD5 | 347601a57c17cab6e0d03251ceaeaa55 |
|
BLAKE2b-256 | 1457b47d664a94e73637038ea289223be07980ee9002b85af43555814d6df150 |