Bag of Tricks for Graph Neural Networks
Project description
gtrick: Bag of Tricks for Graph Neural Networks.
gtrick is an easy-to-use Python package collecting tricks for Graph Neural Networks. We test and provide powerful tricks to boost your models' performance.
Trick is all you need!(Chinese Introduction)
Trick
Trick | Example | Task | Reference |
---|---|---|---|
VirtualNode | DGL PyG |
graph | OGB Graph Property Prediction Examples |
FLAG | DGL PyG |
node* graph |
Robust Optimization as Data Augmentation for Large-scale Graphs |
Fingerprint | DGL PyG |
molecular graph* | Extended-Connectivity Fingerprints |
Random Feature | DGL PyG |
graph* | Random Features Strengthen Graph Neural Networks |
Label Propagation | DGL PyG |
node* | Learning from Labeled and Unlabeled Datawith Label Propagation |
Correct & Smooth | DGL PyG |
node* | Combining Label Propagation And Simple Models Out-performs Graph Neural Networks |
Common Neighbors | DGL PyG |
link* | Link Prediction with Structural Information |
Resource Allocation | DGL PyG |
link* | Link Prediction with Structural Information |
Adamic Adar | DGL PyG |
link* | Link Prediction with Structural Information |
Anchor Distance | DGL PyG |
link* | Link Prediction with Structural Information |
Installation
Note: This is a developmental release.
pip install gtrick
Benchmark
The results listed below are implemented by PyG. You can find the results of DGL in DGL Benchmark.
Graph Property Prediction
Dataset | ogbg-molhiv | |
---|---|---|
Trick | GCN | GIN |
— | 0.7690 ± 0.0053 | 0.7778 ± 0.0130 |
+Virtual Node | 0.7581 ± 0.0135 | 0.7713 ± 0.0036 |
+FLAG | 0.7627 ± 0.0124 | 0.7764 ± 0.0083 |
+Random Feature | 0.7743 ± 0.0134 | 0.7692 ± 0.0065 |
Random Forest + Fingerprint | 0.8218 ± 0.0022 |
Node Property Prediction
Dataset | ogbn-arxiv | |
---|---|---|
Trick | GCN | SAGE |
— | 0.7167 ± 0.0022 | 0.7167 ± 0.0025 |
+FLAG | 0.7187 ± 0.0020 | 0.7206 ± 0.0013 |
+Label Propagation | 0.7212 ± 0.0006 | 0.7197 ± 0.0020 |
+Correct & Smooth | 0.7220 ± 0.0037 | 0.7264 ± 0.0004 |
Link Property Prediction
Dataset | ogbn-collab | |
---|---|---|
Trick | GCN | SAGE |
— | 0.4718 ± 0.0093 | 0.5140 ± 0.0040 |
+Common Neighbors | 0.5332 ± 0.0019 | 0.5370 ± 0.0034 |
+Resource Allocation | 0.5024 ± 0.0092 | 0.4787 ± 0.0060 |
+Adamic Adar | 0.5283 ± 0.0048 | 0.5291 ± 0.0032 |
+AnchorDistance | 0.4740 ± 0.0135 | 0.4290 ± 0.0107 |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
gtrick-0.0.dev2.tar.gz
(11.2 kB
view hashes)
Built Distribution
gtrick-0.0.dev2-py3-none-any.whl
(14.3 kB
view hashes)
Close
Hashes for gtrick-0.0.dev2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 672284cb69a0fa56dc48aa0dcc89c4a262bca8923a1eeffe4d6fed596834278e |
|
MD5 | 6061c57443c216da7fc4fe1ade61aa78 |
|
BLAKE2b-256 | e260e17b57ea26e3a87efa563d4228eff68a66f3d8622357d5f75edcdaa28640 |