Deep Guided Filtering Layer for PyTorch
Project description
[Project] [Paper] [arXiv] [Demo] [Home]
Official implementation of Fast End-to-End Trainable Guided
Filter.
Faster, Better and Lighter for pixel-wise image
prediction.
Paper
Fast End-to-End Trainable Guided Filter
Huikai Wu, Shuai Zheng, Junge Zhang, Kaiqi Huang
CVPR 2018
Install
pip install guided-filter-pytorch
Usage
from guided_filter_pytorch.guided_filter import FastGuidedFilter hr_y = FastGuidedFilter(r, eps)(lr_x, lr_y, hr_x)
from guided_filter_pytorch.guided_filter import GuidedFilter hr_y = GuidedFilter(r, eps)(hr_x, init_hr_y)
from guided_filter_pytorch.guided_filter import ConvGuidedFilter hr_y = ConvGuidedFilter(r, norm)(lr_x, lr_y, hr_x)
Citation
@inproceedings{wu2017fast, title = {Fast End-to-End Trainable Guided Filter}, author = {Wu, Huikai and Zheng, Shuai and Zhang, Junge and Huang, Kaiqi}, booktitle = {CVPR}, year = {2018} }
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file guided_filter_pytorch-3.7.5.tar.gz
.
File metadata
- Download URL: guided_filter_pytorch-3.7.5.tar.gz
- Upload date:
- Size: 3.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0bf812ffecc38e5576bb1b567bd64246c78d0730ab310d3e45317151b4a0551b |
|
MD5 | 2d37b2eb234ef57085a05c89d26b1132 |
|
BLAKE2b-256 | 7a65f260be1413556374fed414410d3242062f858ad01004524b7d553cc901a3 |
File details
Details for the file guided_filter_pytorch-3.7.5-py3-none-any.whl
.
File metadata
- Download URL: guided_filter_pytorch-3.7.5-py3-none-any.whl
- Upload date:
- Size: 3.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2b63cd8321f9a7201267a518d5ac090ce1928bcf415fb38d81e5a5192795e746 |
|
MD5 | ff054e717585a31f05387f1dfa699645 |
|
BLAKE2b-256 | 17765a7f6a3bbd4e2857806619d04d1c316f597f35f8f7ad1939e54fc8da9729 |