Skip to main content

A quick post-process for resolve or assistant the VASP calculations

Project description

GVasp Manual

GitHub Documentation Status Anaconda-Server Badge Anaconda-Server Badge

Table of contents

About GVasp

A quick post-process for resolve or assistant the VASP calculations, which can involve in four kinds of tasks as below:

  • generate inputs
  • visualize trajectory
  • plot interface
  • charge related work

More detailed information can see here.

Install

Create Environment

Before install the GVasp, we strongly recommend you to install conda before.

After install conda, create a new environment, e.g. gvasp, and install a python (version=3.9), using following command:

conda create -n gvasp python=3.9

Install GVasp

  1. From sourcecode

    You can install the GVasp using the following command (under the root directory):

    python3 setup.py install
    

    or

    pip3 install .
    
  2. Use PyPi

    We have made the wheel (production process can see here) and upload to the pypi, you can also install from it:

    pip3 install gvasp
    

    If the download speed is too slow, we suggest you change the pip mirror by modifying the ~/.pip/pip.conf file.

  3. Use conda

    We now also made a conda package (production process can see here) and uploaded to the Anaconda, so you can also install GVasp from it:

    conda install -c hui_zhou gvasp
    

If you run the gvasp -v and print version information, then you install the GVasp successful ~~

GVasp version 0.0.2 (Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.35)

Setting Environment

Default Environment

Default environment can display by following command:

gvasp -l/--list

Initial environment is like this:

------------------------------------Configure Information---------------------------------
! ConfigDir:      /mnt/c/Users/hui_zhou/Desktop/packages/gvasp/gvasp
! INCAR-template: /mnt/c/Users/hui_zhou/Desktop/packages/gvasp/gvasp/INCAR
! UValue:         /mnt/c/Users/hui_zhou/Desktop/packages/gvasp/gvasp/UValue.yaml
! PotDir:         /mnt/c/Users/hui_zhou/Desktop/packages/gvasp/gvasp/pot
! LogDir:         /mnt/c/Users/hui_zhou/Desktop/packages/gvasp/gvasp/logs
------------------------------------------------------------------------------------------
  • ConfigDir: represents the directory of INCAR (template), UValue.yaml and pot

  • LogDir: represents the directory of logs

  • INCAR: INCAR template file for all GVasp submit tasks

  • UValue.yaml: define the UValue for elements

  • pot: directory of the elements' POTCAR (please prepare it by yourself)

The structure of pot like this:

pot
├── PAW_LDA
├── PAW_PBE
├── PAW_PW91
├── USPP_LDA
├── USPP_PW91
└── vdw_kernel.bindat

Modify Environment

If you don’t like the default environment, you can modify the environment by writing a config.json (or other name, but json format), the structure of config.json like this:

{
  "config_dir": "/your_directory_to_three_mentioned_files",
  "potdir": "/your_pot_directory",
  "logdir": "/your_logs_directory"
}

and run command:

gvasp config -f config.json

Then the environment will be reset, GVasp will auto search the INCARand UValue.yaml under the config_dir.

Code Structure

Requirements

  • Python >= 3.9
  • Cython
  • pybind11
  • numpy
  • matplotlib

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

gvasp-0.0.2-cp39-cp39-win_amd64.whl (258.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

gvasp-0.0.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

File details

Details for the file gvasp-0.0.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gvasp-0.0.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 258.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.9.12

File hashes

Hashes for gvasp-0.0.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 298913e830c4f04aa880af034faac7ed4c086588336fbd191b9844a7804512f9
MD5 fae9cd79e8e3ae7df67fd3ca1c6c02dd
BLAKE2b-256 ce61cf99aa2beeedbe9215f328c78edef73ac903a0cf181aadb2f88deb9d55d7

See more details on using hashes here.

File details

Details for the file gvasp-0.0.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

  • Download URL: gvasp-0.0.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, manylinux: glibc 2.27+ x86-64, manylinux: glibc 2.28+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.11.3 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.9.12

File hashes

Hashes for gvasp-0.0.2-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5cd5f18532f82675a64378adce0bc7ce8b6cc014ddf66d0c91b2396229cc10cd
MD5 32ea9ec67933681ef70046f68106061e
BLAKE2b-256 200765eac413e294933aa050e18cf8ff4fc297c5067241acec9d5692149ac83e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page