A collection of handy tools for GWAS
Project description
gwaslab
A collection of handy python scripts for GWAS. This package is based on matplotlib and seaborn. Just want to save myself from repetitive work.
What you can do with gwaslab:
- Side-by-side Manhattan and QQ plot
- Manhattan plot
- QQ plot
- Calculate lamda GC
- [Select top SNPs based on a given window size.]
- Convert beta/se <-> OR/95%L_U/95%L_L
- Select hapmap3 SNPs from sumstats
- Convert Observed scale heritability to liability scale heritability
Requirements:
- Python>3 2. "scipy" 3. "numpy" 4. "pandas" 5. "matplotlib" 6. "seaborn"
Install:
pip install gwaslab
Current version: 0.0.4
Usage:
Input: pandas dataframe
Create Manhattan plot and QQ plot with just one line
import gwaslab as gl
## creat qqplot and manhattan plot with just one line
## pass a dataframe in, and specify the column name for chromosome, base pair position, and also the p values.
gl.mqqplot(sumstats,"CHR","POS","PVALUE")
## adjust the plot, select top snps and add annotation sutomatically.
gl.mqqplot(sumstats,"CHR","POS","PVALUE",cut=20,cutfactor=10,anno=True,verbose=True,save=True,title="gwaslab")
## all options
gl.mqqplot(insumstats,
chrom,
pos,
p,
scaled=False,
cut=0,
cutfactor=10,
cut_line_color="#ebebeb",
windowsizekb=500,
anno=None,
sig_level=5e-8,
sig_line_color="grey",
suggestive_sig_level=5e-6,
title =None,
mtitle=None,
qtitle=None,
figsize =(15,5),
fontsize = 10,
colors = ["#000042", "#7878BA"],
verbose=True,
repel_force=0.03,
gc=True,
save=None,
saveargs={"dpi":300,"facecolor":"white"}
)
Or you can plot it separately.
Manhattan plot
gl.mplot()
QQ plot
gl.qqplot()
Calculate genomic inflation factor
gc(insumstats{"PVALUE"},mode="p",level=0.5)
gc(insumstats["Z"],mode="z",level=0.5)
gc(insumstats["chi2"],mode="chi2",level=0.5)
Extract top snps given a sliding window size
gl.getsig(insumstats,id,chrom,pos,p)
gl.getsig(insumstats,id,chrom,pos,p,windowsizekb=500,verbose=True,sig_level=5e-8)
Converting observed scale heritability to liability scale heritability
gl.h2_obs_to_liab(h2_obs, P, K)
gl.h2_obs_to_liab(h2_obs, P, K, se_obs=None)
Ref:
Log
- 0.0.4
- added mqqplot feature
- fixed gtesig algorithm
- recreated mplot and qqplot
Next
- beta to OR
- OR to beta
For more information: https://gwaslab.com/
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
gwaslab-0.0.5.tar.gz
(10.1 kB
view details)
Built Distribution
gwaslab-0.0.5-py3-none-any.whl
(13.4 kB
view details)
File details
Details for the file gwaslab-0.0.5.tar.gz
.
File metadata
- Download URL: gwaslab-0.0.5.tar.gz
- Upload date:
- Size: 10.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.24.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.47.0 importlib-metadata/4.11.1 keyring/21.2.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 30403f415ba5a6204f331c1cd1cb71064b075bb97d1a879ef29a4817b0577d07 |
|
MD5 | e54ebcf34f28815c9da069aa2d5133a6 |
|
BLAKE2b-256 | 9c31da85c612e903b577938d6ca80d9e020c23168e5e19dc9b41d81a57f9ca44 |
File details
Details for the file gwaslab-0.0.5-py3-none-any.whl
.
File metadata
- Download URL: gwaslab-0.0.5-py3-none-any.whl
- Upload date:
- Size: 13.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.24.0 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.47.0 importlib-metadata/4.11.1 keyring/21.2.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c8c0215b66f86a9f59739648b9a255d20b643aca8bbf0733b3acccf694c65aed |
|
MD5 | d9ced8954a23ff74cad7f6593685464f |
|
BLAKE2b-256 | 3d2404fad77eeaea27acfa3bf1e9f95832e06e187e4fe8c72a1ee6a499562aef |