Skip to main content

A collection of handy tools for GWAS

Project description

gwaslab

A collection of handy python scripts for GWAS.

Just want to make lif eaiser and save myself from repetitive work.

What you can do with gwaslab:

  1. Side-by-side Manhattan and QQ plot
  2. Manhattan plot
  3. QQ plot
  4. Calculate lamda GC
  5. [Select top SNPs based on a given window size.]
  6. Convert beta/se <-> OR/95%L_U/95%L_L
  7. Select hapmap3 SNPs from sumstats and convert to ldsc format
  8. Convert Observed scale heritability to liability scale heritability
  9. read ldsc log and extract numeric results directly into a pandas dataframe.
  10. compare the effect size of select variants / or automatically detected lead variants from two sumstats.

屏幕截图 2022-03-28 235029

Requirements:

  1. Python>3 2. "scipy" 3. "numpy" 4. "pandas" 5. "matplotlib" 6. "seaborn" 7."adjustText"

Install:

pip install gwaslab

Current version: 1.0.2

Usage:

Input: pandas dataframe

Create Manhattan plot and QQ plot with just one line

import gwaslab as gl

## load gwaslab Sumstats object
AF = gl.Sumstats("./AF_bbj.txt.gz",
                   snpid="SNP",
                   eaf="FREQ1",
                   chrom="CHR",
                   pos="POS",
                   ea="A1",
                   nea="A2",
                   n=12121,
                   p="PVALUE",
                   beta="EFFECT1",
                   se="STDERR",
                   other=["WALDCHISQ"])

## creat qqplot and manhattan plot with just one line
myplot = AF.plot_mqq(
        snpid="MARKERNAME",
        mode="mqq",
        stratified=True,
        eaf="EAF",
        anno=True,
        cut=20,
        highlight=["rs7434417","rs12044963"], #the lead SNPs to highlight
        highlight_color="#33FFA0", 
        maf_bin_colors = ["#f0ad4e","#5cb85c", "#7878BA","#000042"])

Or you can plot it separately.

Calculate genomic inflation factor

AF.get_gc()

Extract top snps given a sliding window size

AF.get_lead()

Ref: Zhou, Wei, and Global Biobank Meta-analysis Initiative. "Global Biobank Meta-analysis Initiative: Powering genetic discovery across human diseases." medRxiv (2021).

Converting observed scale heritability to liability scale heritability

gl.h2_obs_to_liab(h2_obs, P, K)

gl.h2_obs_to_liab(h2_obs, P, K, se_obs=None)

Ref: Equation 23 Lee, Sang Hong, et al. "Estimating missing heritability for disease from genome-wide association studies." The American Journal of Human Genetics 88.3 (2011): 294-305.

Read ldsc results in to pandas DataFrame

Directly read ldsc -h2 or -rg into pandas dataframe...

pathlist=["./test.results.log","./test2.results.log"]

ldsc_h2 = gl.read_ldsc(pathlist, mode="h2")
ldsc_rg = gl.read_ldsc(pathlist, mode="rg")

ldsc_h2
Filename	h2_obs	h2_se	Lambda_gc	Mean_chi2	Intercept	Intercept_se	Ratio	Ratio_se
test.results.log	42.9954	8.657	1.2899	1.3226	0.0098	0.0098	0.6538	0.0304
test2.results.log	NA	NA	1.2899	1.3226	0.0098	0.0098	Ratio < 0	NA

ldsc_rg
p1	p2	rg	se	z	p	h2_obs	h2_obs_se	h2_int	h2_int_se	gcov_int	gcov_int_se
./test.results.log	./test.results.log	0.2317	0.0897	2.5824	0.0098	0.3305	0.0571	0.9612	0.009	-0.0001	0.0062
./test.results.log	./test2.results.log	0.2317	0.0897	2.5824	0.0098	0.3305	0.0571	0.9612	0.009	-0.0001	0.0062

Compare effect sizes of selected variants from two sumstats

gl.compare_effect()

preformat your sumstats for a qc workflow


Log

  • 1.0.0 implemented Sumstats object

  • 0.0.5 - 0.0.6

  • added compare_effect, read_ldsc

  • 0.0.4

    • added mqqplot feature
    • fixed gtesig algorithm
    • recreated mplot and qqplot

For more information: https://gwaslab.com/

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gwaslab-1.0.3.tar.gz (20.5 MB view details)

Uploaded Source

Built Distribution

gwaslab-1.0.3-py3-none-any.whl (20.5 MB view details)

Uploaded Python 3

File details

Details for the file gwaslab-1.0.3.tar.gz.

File metadata

  • Download URL: gwaslab-1.0.3.tar.gz
  • Upload date:
  • Size: 20.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.1.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for gwaslab-1.0.3.tar.gz
Algorithm Hash digest
SHA256 ff3c586683c34822145ed4be0b9e9f6edf0310bc5851640a294e8e89b884e2e1
MD5 1e674ab605ce934c0522f487eadcaa4a
BLAKE2b-256 5a32846bf3035324d754c2744ff5d7fba4a525a65d051f3d65e8ab4b266fb610

See more details on using hashes here.

File details

Details for the file gwaslab-1.0.3-py3-none-any.whl.

File metadata

  • Download URL: gwaslab-1.0.3-py3-none-any.whl
  • Upload date:
  • Size: 20.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.1.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for gwaslab-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 efca7e6b65d7b75a986c3fc7cd4ee3477e8356500558a8d46c2b9032d26c3d02
MD5 136186d5661fa54d1843abf3218da979
BLAKE2b-256 6ad42556e94e7308eedbcf5c99bd4079a1b02a00495e59f0006272464108041c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page