Skip to main content

A collection of handy tools for GWAS SumStats

Project description

image

gwaslab

badge badge_pip Hits

  • A handy python toolkit for handling GWAS sumstats.
  • Each process is modularized and can be customized to your needs.
  • Sumstats-specific manipulations are designed as methods of a python object, gwaslab.Sumstats.

Please check GWASLab document at https://cloufield.github.io/gwaslab/ Note: gwaslab is being updated very frequently for now. I will release the first stable version soon (within this year)! Please stay tuned.

Install

pip install gwaslab==3.3.11
import gwaslab as gl
# load plink2 output
mysumstats = gl.Sumstats("t2d_bbj.txt.gz", fmt="plink2")

# or you can specify the columns:
mysumstats = gl.Sumstats("t2d_bbj.txt.gz",
             snpid="SNP",
             chrom="CHR",
             pos="POS",
             ea="ALT",
             nea="REF",
             neaf="Frq",
             beta="BETA",
             se="SE",
             p="P",
             direction="Dir",
             n="N",
             build="19")

# manhattan and qq plot
mysumstats.plot_mqq()
...

Functions

Loading and Formatting

  • Loading sumstats by simply specifying the software name or format name, or specifying each column name.
  • Converting GWAS sumstats to specific formats:
    • LDSC / MAGMA / METAL / PLINK / SAIGE / REGENIE / MR-MEGA / GWAS-SSF / FUMA / GWAS-VCF / BED...
    • check available formats
  • Optional filtering of variants in commonly used genomic regions: Hapmap3 SNPs / High-LD regions / MHC region

Standardization & Normalization

  • Variant ID standardization
  • CHR and POS notation standardization
  • Variant POS and allele normalization
  • Genome build : Inference and Liftover

Quality control, Value conversion & Filtering

  • Statistics sanity check
  • Extreme value removal
  • Equivalent statistics conversion
    • BETA/SE , OR/OR_95L/OR_95U
    • P, Z, CHISQ, MLOG10P
  • Customized value filtering

Harmonization

  • rsID assignment based on CHR, POS, and REF/ALT
  • CHR POS assignment based on rsID using a reference text file
  • Palindromic SNPs and indels strand inference using a reference VCF
  • Check allele frequency discrepancy using a reference VCF
  • Reference allele alignment using a reference genome sequence FASTA file

Visualization

  • Mqq plot : Manhattan plot , QQ plot or MQQ plot (with a bunch of customizable features including auto-annotate nearest gene names)
  • Miami plot : Manhattan plot
  • Brisbane plot: GWAS hits density plot
  • Regional plot : GWAS regional plot
  • Heatmap : ldsc-rg genetic correlation matrix
  • Scatter Plot : variant effect size comparison with sumstats
  • Scatter Plot : allele frequency comparison
  • Forest Plot : forest plots for meta-analysis of SNPs

Visualization Examples

imageimageimageimage

image

Other Utilities

  • Read ldsc h2 or rg outputs directly as DataFrames (auto-parsing).
  • Extract lead variants given a sliding window size.
  • Extract novel loci given a list of known lead variants / or known loci obtained form GWAS Catalog.
  • Logging : keep a complete record of manipulations applied to the sumstats.
  • Sumstats summary: give you a quick overview of the sumstats.

Requirements:

  • Python >= 3.6
  • pySAM
  • pyensembl
  • scikit-allel
  • Biopython >= 1.79
  • liftover >= 1.1.13
  • pandas >= 1.2.4
  • numpy >= 1.21.2
  • matplotlib >=3.5
  • seaborn >=0.11.1
  • scipy >=1.6.2
  • statsmodels > =0.13
  • adjustText

Citation

A manuscript is in preparation and will be released soon.

Contacts

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gwaslab-3.3.14.tar.gz (20.6 MB view details)

Uploaded Source

Built Distribution

gwaslab-3.3.14-py3-none-any.whl (20.6 MB view details)

Uploaded Python 3

File details

Details for the file gwaslab-3.3.14.tar.gz.

File metadata

  • Download URL: gwaslab-3.3.14.tar.gz
  • Upload date:
  • Size: 20.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.28.1 requests-toolbelt/0.9.1 urllib3/1.26.13 tqdm/4.47.0 importlib-metadata/4.11.1 keyring/21.2.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.8.3

File hashes

Hashes for gwaslab-3.3.14.tar.gz
Algorithm Hash digest
SHA256 07470e03aaa85d109bbdb8e2025833b6447ae7e0b1e55ca8b4b0ef61b839e45b
MD5 92fe4d76a2809e0750968452d687edf8
BLAKE2b-256 f10b6bdca188a8983bbddb4602c1c3b99e666508e0e6f14e50dfbe5c3ad00b53

See more details on using hashes here.

File details

Details for the file gwaslab-3.3.14-py3-none-any.whl.

File metadata

  • Download URL: gwaslab-3.3.14-py3-none-any.whl
  • Upload date:
  • Size: 20.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.28.1 requests-toolbelt/0.9.1 urllib3/1.26.13 tqdm/4.47.0 importlib-metadata/4.11.1 keyring/21.2.1 rfc3986/2.0.0 colorama/0.4.3 CPython/3.8.3

File hashes

Hashes for gwaslab-3.3.14-py3-none-any.whl
Algorithm Hash digest
SHA256 fa27681c2ac09821b9e7b4966079b4b73834cde268a630197e69f1d2d14ddeb0
MD5 41f04a1151f339d06b92fbec62ff9645
BLAKE2b-256 9fc68c7f91c8d97d5fbedac7be09c873265996228a8dffa2c6b227a79a77d909

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page