Skip to main content

A collection of handy tools for GWAS

Project description

image

gwaslab

badge badge_pip Hits

Note: Some part of the docs are outdated. I am currently updating the documents.

  • A simple python package for handling GWAS sumstats.
  • Each process is modularized and can be customized to your needs.
  • Most manipulations are designed as methods of python object, gwaslab.Sumstats.

Please check GWASLab document at https://cloufield.github.io/gwaslab/

import gwaslab as gl
# load plink2 output
mysumstats = gl.Sumstats("t2d_bbj.txt.gz",
             fmt="plink2",
             build="19")

# or you can specify the columns:
mysumstats = gl.Sumstats("t2d_bbj.txt.gz",
             snpid="SNP",
             chrom="CHR",
             pos="POS",
             ea="ALT",
             nea="REF",
             neaf="Frq",
             beta="BETA",
             se="SE",
             p="P",
             direction="Dir",
             n="N",
             build="19")

# manhattan and qq plot
mysumstats.plot_mqq()
...

Functions

Standardization, Normalization & Harmonization

  • CHR and POS notation standardization
  • Variant POS and allele normalization
  • Genome build : Liftover
  • Reference allele alignment using a reference genome sequence
  • rsID assignment based on CHR, POS, REF and ALT
  • CHR POS assignment based on rsID using a reference VCF
  • Palindromic SNPs and indels strand inference using a reference VCF
  • Check allele frequency discrepancy using a reference VCF

Quality control, Value conversion & Filtering

  • Statistics sanity check
  • Equivalent statistics conversion
    • BETA/SE , OR/OR_95L/OR_95U
    • P, Z, CHISQ, MLOG10
  • Extract/exclude hapmap3 variants
  • Extract/exclude MHC variants
  • Filtering values.

Visualization

  • Mqq plot : Manhattan plot and QQ plot side by side (with a bunch of customizable features including auto-annotate nearest gene names)
  • Heatmap : ldsc-rg genetic correlation matrix
  • Scatter Plot : variant effect size comparison with sumstats
  • Scatter Plot : allele frequency comparison
  • Forest Plot : forest plots for meta-analysis of SNPs
  • Examples

imageimageimageimage

Other Utilities

  • Read ldsc h2 or rg outputs directly as DataFrames (auto-parsing).
  • Extract lead variants given a sliding window size.
  • Extract novel loci given a list of known lead variants.
  • Logging : keep a complete record of manipulations from raw data to munged data.
  • Sumstats summary function: know your data better.
  • Formating GWAS sumstats in certain formats

Install

pip install gwaslab==3.3.2

Requirements:

  • Python >= 3.6
  • pySAM
  • pyensembl
  • scikit-allel
  • Biopython >= 1.79
  • liftover >= 1.1.13
  • pandas >= 1.2.4
  • numpy >= 1.21.2
  • matplotlib >=3.5
  • seaborn >=0.11.1
  • scipy >=1.6.2
  • statsmodels > =0.13
  • adjustText

Contacts

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gwaslab-3.3.2.tar.gz (77.8 MB view details)

Uploaded Source

Built Distribution

gwaslab-3.3.2-py3-none-any.whl (77.8 MB view details)

Uploaded Python 3

File details

Details for the file gwaslab-3.3.2.tar.gz.

File metadata

  • Download URL: gwaslab-3.3.2.tar.gz
  • Upload date:
  • Size: 77.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.1.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for gwaslab-3.3.2.tar.gz
Algorithm Hash digest
SHA256 f6ce56301f00bf35a0b3d56de8f04aeb139409c35fe10316adf2f144f0c56ce2
MD5 0232175e958e297e7f9aa96df572455b
BLAKE2b-256 1d58958b6212899ab99d7119d77133229ea6c861b9ba264d4ee63f06c65af04e

See more details on using hashes here.

File details

Details for the file gwaslab-3.3.2-py3-none-any.whl.

File metadata

  • Download URL: gwaslab-3.3.2-py3-none-any.whl
  • Upload date:
  • Size: 77.8 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.1.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for gwaslab-3.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 19a706e8b9cc1aabbaec034216cd12b7a215cf8da8bcebe783f37063bc9f5ec7
MD5 6c7aca692d6a1eb9d3497e74c52cf501
BLAKE2b-256 243c7235d2b1b651efe50a635b966d0af3cd522d7a0bc8c3b261a3021b3fd43b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page