Skip to main content

A collection of handy tools for GWAS SumStats

Project description

image

gwaslab

badge badge_pip Hits

  • A handy python toolkit for handling GWAS sumstats.
  • Each process is modularized and can be customized to your needs.
  • Sumstats-specific manipulations are designed as methods of a python object, gwaslab.Sumstats.

Please check GWASLab document at https://cloufield.github.io/gwaslab/ Note: gwaslab is being updated very frequently for now. I will release the first stable version soon (within this year)! Please stay tuned.

Install

pip install gwaslab==3.3.18
import gwaslab as gl
# load plink2 output
mysumstats = gl.Sumstats("t2d_bbj.txt.gz", fmt="plink2")

# or you can specify the columns:
mysumstats = gl.Sumstats("t2d_bbj.txt.gz",
             snpid="SNP",
             chrom="CHR",
             pos="POS",
             ea="ALT",
             nea="REF",
             neaf="Frq",
             beta="BETA",
             se="SE",
             p="P",
             direction="Dir",
             n="N",
             build="19")

# manhattan and qq plot
mysumstats.plot_mqq()
...

Functions

Loading and Formatting

  • Loading sumstats by simply specifying the software name or format name, or specifying each column name.
  • Converting GWAS sumstats to specific formats:
    • LDSC / MAGMA / METAL / PLINK / SAIGE / REGENIE / MR-MEGA / GWAS-SSF / FUMA / GWAS-VCF / BED...
    • check available formats
  • Optional filtering of variants in commonly used genomic regions: Hapmap3 SNPs / High-LD regions / MHC region

Standardization & Normalization

  • Variant ID standardization
  • CHR and POS notation standardization
  • Variant POS and allele normalization
  • Genome build : Inference and Liftover

Quality control, Value conversion & Filtering

  • Statistics sanity check
  • Extreme value removal
  • Equivalent statistics conversion
    • BETA/SE , OR/OR_95L/OR_95U
    • P, Z, CHISQ, MLOG10P
  • Customized value filtering

Harmonization

  • rsID assignment based on CHR, POS, and REF/ALT
  • CHR POS assignment based on rsID using a reference text file
  • Palindromic SNPs and indels strand inference using a reference VCF
  • Check allele frequency discrepancy using a reference VCF
  • Reference allele alignment using a reference genome sequence FASTA file

Visualization

  • Mqq plot : Manhattan plot , QQ plot or MQQ plot (with a bunch of customizable features including auto-annotate nearest gene names)
  • Miami plot : Manhattan plot
  • Brisbane plot: GWAS hits density plot
  • Regional plot : GWAS regional plot
  • Heatmap : ldsc-rg genetic correlation matrix
  • Scatter Plot : variant effect size comparison with sumstats
  • Scatter Plot : allele frequency comparison
  • Forest Plot : forest plots for meta-analysis of SNPs

Visualization Examples

imageimageimageimage

image

Other Utilities

  • Read ldsc h2 or rg outputs directly as DataFrames (auto-parsing).
  • Extract lead variants given a sliding window size.
  • Extract novel loci given a list of known lead variants / or known loci obtained form GWAS Catalog.
  • Logging : keep a complete record of manipulations applied to the sumstats.
  • Sumstats summary: give you a quick overview of the sumstats.

Requirements

Python >= 3.8
pySAM >0.18,<0.20
pyensembl >=2.2.3
scikit-allel
Biopython >= 1.79
liftover >= 1.1.13
pandas >= 1.3,<1.5
numpy >= 1.21.2
matplotlib >=3.5
seaborn >=0.11.1
scipy >=1.6.2
statsmodels > =0.13
adjustText

Citation

A manuscript is in preparation and will be released soon. Sample GWAS data used in gwaslab is obtained from: http://jenger.riken.jp/ Sample GWAS data citation : Suzuki, Ken, et al. "Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population." Nature genetics 51.3 (2019): 379-386.

Contacts

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gwaslab-3.3.20.tar.gz (20.6 MB view details)

Uploaded Source

Built Distribution

gwaslab-3.3.20-py3-none-any.whl (20.6 MB view details)

Uploaded Python 3

File details

Details for the file gwaslab-3.3.20.tar.gz.

File metadata

  • Download URL: gwaslab-3.3.20.tar.gz
  • Upload date:
  • Size: 20.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.1.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for gwaslab-3.3.20.tar.gz
Algorithm Hash digest
SHA256 235690e351cdf35454c7695067388c4c05ea02a6014bff5075234057eacf77a4
MD5 9ba45519d73375e50e979f702879ead8
BLAKE2b-256 1b06eb374b4fa2f903c91a031b9f9376bc1b8a033e2a7291267767aa3a68cc81

See more details on using hashes here.

File details

Details for the file gwaslab-3.3.20-py3-none-any.whl.

File metadata

  • Download URL: gwaslab-3.3.20-py3-none-any.whl
  • Upload date:
  • Size: 20.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.1.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for gwaslab-3.3.20-py3-none-any.whl
Algorithm Hash digest
SHA256 eae5af81385a49f99343239fe9287ff2e666f704a8230ee5c091d5a833e7bfc2
MD5 4b5361bb6e372dc70891139844731e0a
BLAKE2b-256 425c01827b7d30773dc19facc67555c84cd56bcf0dde9086560f948b9ede1a94

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page