A collection of handy tools for GWAS
Project description
gwaslab
- A simple python toolkit for handling GWAS sumstats.
- Each process is modularized and can be customized to your needs.
- Sumstats-specific manipulations are designed as methods of a python object,
gwaslab.Sumstats
.
Please check GWASLab document at https://cloufield.github.io/gwaslab/
Install
pip install gwaslab==3.3.4
import gwaslab as gl
# load plink2 output
mysumstats = gl.Sumstats("t2d_bbj.txt.gz", fmt="plink2")
# or you can specify the columns:
mysumstats = gl.Sumstats("t2d_bbj.txt.gz",
snpid="SNP",
chrom="CHR",
pos="POS",
ea="ALT",
nea="REF",
neaf="Frq",
beta="BETA",
se="SE",
p="P",
direction="Dir",
n="N",
build="19")
# manhattan and qq plot
mysumstats.plot_mqq()
...
Functions
Loading and Formatting
- Loading sumstats by simply specifying the software name or format name.
- Converting GWAS sumstats to specific formats:
- LDSC / MAGMA / METAL / MR-MEGA / FUMA / VCF / BED...
- check available formats
- Optional Filtering of variants in Hapmap3 SNPs / High-LD regions / HLA region
Standardization & Normalization
- Variant ID standardization
- CHR and POS notation standardization
- Variant POS and allele normalization
- Genome build : Inference and Liftover
Quality control, Value conversion & Filtering
- Statistics sanity check
- Extreme value removal
- Equivalent statistics conversion
- BETA/SE , OR/OR_95L/OR_95U
- P, Z, CHISQ, MLOG10
- Customized value filtering
Harmonization
- rsID assignment based on CHR, POS, and REF/ALT
- CHR POS assignment based on rsID using a reference text file
- Palindromic SNPs and indels strand inference using a reference VCF
- Check allele frequency discrepancy using a reference VCF
- Reference allele alignment using a reference genome sequence FASTA file
Visualization
- Mqq plot : Manhattan plot , QQ plot or MQQ plot (with a bunch of customizable features including auto-annotate nearest gene names)
- Miami plot : Manhattan plot
- Brisbane plot: GWAS hits density plot
- Regional plot : GWAS regional plot
- Heatmap : ldsc-rg genetic correlation matrix
- Scatter Plot : variant effect size comparison with sumstats
- Scatter Plot : allele frequency comparison
- Forest Plot : forest plots for meta-analysis of SNPs
Visualization Examples
Other Utilities
- Read ldsc h2 or rg outputs directly as DataFrames (auto-parsing).
- Extract lead variants given a sliding window size.
- Extract novel loci given a list of known lead variants.
- Logging : keep a complete record of manipulations from raw data to munged data.
- Sumstats summary function: know your data better.
Requirements:
- Python >= 3.6
- pySAM
- pyensembl
- scikit-allel
- Biopython >= 1.79
- liftover >= 1.1.13
- pandas >= 1.2.4
- numpy >= 1.21.2
- matplotlib >=3.5
- seaborn >=0.11.1
- scipy >=1.6.2
- statsmodels > =0.13
- adjustText
Contacts
- Github: https://github.com/Cloufield/gwaslab
- Blog (in Chinese): https://gwaslab.com/
- Email: gwaslab@gmail.com
- Stats: https://pypistats.org/packages/gwaslab
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
gwaslab-3.3.5.tar.gz
(98.3 MB
view details)
Built Distribution
gwaslab-3.3.5-py3-none-any.whl
(98.3 MB
view details)
File details
Details for the file gwaslab-3.3.5.tar.gz
.
File metadata
- Download URL: gwaslab-3.3.5.tar.gz
- Upload date:
- Size: 98.3 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.1.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 662ac2b2d215b99c379adbab47abb9a6a39592d3194b848e16cb85164ff3ebe0 |
|
MD5 | 0dd2c4e47c42cb3cf2651938e8b58dbf |
|
BLAKE2b-256 | 98c21f26f25b6d36e0427724daebedd5b037e9bc939f6d8185655c2011a1b6b5 |
File details
Details for the file gwaslab-3.3.5-py3-none-any.whl
.
File metadata
- Download URL: gwaslab-3.3.5-py3-none-any.whl
- Upload date:
- Size: 98.3 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.1.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bc178dd8c28cbe5c180874993d4b41492babfa6297a6905b9d2fa6dc2a0e0ba6 |
|
MD5 | eb2c971a96875e2b4a173df36659bdee |
|
BLAKE2b-256 | cd7a52977c1336ef1b53a00be11875251245a0f92406d84573be980c37c49098 |