Skip to main content

A collection of handy tools for GWAS

Project description

image

gwaslab

badge badge_pip Hits

  • A simple python toolkit for handling GWAS sumstats.
  • Each process is modularized and can be customized to your needs.
  • Sumstats-specific manipulations are designed as methods of a python object, gwaslab.Sumstats.

Please check GWASLab document at https://cloufield.github.io/gwaslab/ Note: gwaslab is being updated very frequently for now. I will release the first stable version soon (within this year)! Please stay tuned.

Install

pip install gwaslab==3.3.5
import gwaslab as gl
# load plink2 output
mysumstats = gl.Sumstats("t2d_bbj.txt.gz", fmt="plink2")

# or you can specify the columns:
mysumstats = gl.Sumstats("t2d_bbj.txt.gz",
             snpid="SNP",
             chrom="CHR",
             pos="POS",
             ea="ALT",
             nea="REF",
             neaf="Frq",
             beta="BETA",
             se="SE",
             p="P",
             direction="Dir",
             n="N",
             build="19")

# manhattan and qq plot
mysumstats.plot_mqq()
...

Functions

Loading and Formatting

  • Loading sumstats by simply specifying the software name or format name.
  • Converting GWAS sumstats to specific formats:
  • Optional Filtering of variants in Hapmap3 SNPs / High-LD regions / HLA region

Standardization & Normalization

  • Variant ID standardization
  • CHR and POS notation standardization
  • Variant POS and allele normalization
  • Genome build : Inference and Liftover

Quality control, Value conversion & Filtering

  • Statistics sanity check
  • Extreme value removal
  • Equivalent statistics conversion
    • BETA/SE , OR/OR_95L/OR_95U
    • P, Z, CHISQ, MLOG10
  • Customized value filtering

Harmonization

  • rsID assignment based on CHR, POS, and REF/ALT
  • CHR POS assignment based on rsID using a reference text file
  • Palindromic SNPs and indels strand inference using a reference VCF
  • Check allele frequency discrepancy using a reference VCF
  • Reference allele alignment using a reference genome sequence FASTA file

Visualization

  • Mqq plot : Manhattan plot , QQ plot or MQQ plot (with a bunch of customizable features including auto-annotate nearest gene names)
  • Miami plot : Manhattan plot
  • Brisbane plot: GWAS hits density plot
  • Regional plot : GWAS regional plot
  • Heatmap : ldsc-rg genetic correlation matrix
  • Scatter Plot : variant effect size comparison with sumstats
  • Scatter Plot : allele frequency comparison
  • Forest Plot : forest plots for meta-analysis of SNPs

Visualization Examples

imageimageimageimage

image

Other Utilities

  • Read ldsc h2 or rg outputs directly as DataFrames (auto-parsing).
  • Extract lead variants given a sliding window size.
  • Extract novel loci given a list of known lead variants.
  • Logging : keep a complete record of manipulations from raw data to munged data.
  • Sumstats summary function: know your data better.

Requirements:

  • Python >= 3.6
  • pySAM
  • pyensembl
  • scikit-allel
  • Biopython >= 1.79
  • liftover >= 1.1.13
  • pandas >= 1.2.4
  • numpy >= 1.21.2
  • matplotlib >=3.5
  • seaborn >=0.11.1
  • scipy >=1.6.2
  • statsmodels > =0.13
  • adjustText

Contacts

Project details


Release history Release notifications | RSS feed

This version

3.3.9

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gwaslab-3.3.9.tar.gz (20.6 MB view details)

Uploaded Source

Built Distribution

gwaslab-3.3.9-py3-none-any.whl (20.6 MB view details)

Uploaded Python 3

File details

Details for the file gwaslab-3.3.9.tar.gz.

File metadata

  • Download URL: gwaslab-3.3.9.tar.gz
  • Upload date:
  • Size: 20.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.1.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for gwaslab-3.3.9.tar.gz
Algorithm Hash digest
SHA256 ccb93e9e9f7deef72e999f6113408e676d55017c49c6474bec4b5f6b1d0c4285
MD5 1ac081477bb9264d058a8639723a561e
BLAKE2b-256 077aab80790eac1ca6fa0bf300568ccf8450d34bfafd8a3d411a65c582365660

See more details on using hashes here.

File details

Details for the file gwaslab-3.3.9-py3-none-any.whl.

File metadata

  • Download URL: gwaslab-3.3.9-py3-none-any.whl
  • Upload date:
  • Size: 20.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.1.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for gwaslab-3.3.9-py3-none-any.whl
Algorithm Hash digest
SHA256 effb02618c67fb5871078a228e1394a67d50f48ca7af87dd14f742771e399a88
MD5 4008f6b8ccae8ed0a1561d5606561df8
BLAKE2b-256 520b1284a9c4f29fa7c4f2c658d856f1e6c9524e59052db631929c848dc3488f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page