Skip to main content

A collection of handy tools for GWAS SumStats

Project description

image

GWASLab

badge Downloads badge_pip Hits badge_commit_m

  • A handy Python toolkit for handling GWAS summary statistics (sumstats).
  • Each process is modularized and can be customized to your needs.
  • Sumstats-specific manipulations are designed as methods of a Python object, gwaslab.Sumstats.

Please check GWASLab documentation at https://cloufield.github.io/gwaslab/ Note: GWASLab is being updated very frequently for now. I will release the first stable version soon! Please stay tuned.

Install

pip install gwaslab==3.4.24
import gwaslab as gl
# load plink2 output
mysumstats = gl.Sumstats("t2d_bbj.txt.gz", fmt="plink2")

# load sumstats with auto mode (auto-detecting common headers) 
# assuming ALT/A1 is EA, and frq is EAF
mysumstats = gl.Sumstats("t2d_bbj.txt.gz", fmt="auto")

# or you can specify the columns:
mysumstats = gl.Sumstats("t2d_bbj.txt.gz",
             snpid="SNP",
             chrom="CHR",
             pos="POS",
             ea="ALT",
             nea="REF",
             neaf="Frq",
             beta="BETA",
             se="SE",
             p="P",
             direction="Dir",
             n="N",
             build="19")

# manhattan and qq plot
mysumstats.plot_mqq()
...

Functions

Loading and Formatting

  • Loading sumstats by simply specifying the software name or format name, or specifying each column name.
  • Converting GWAS sumstats to specific formats:
    • LDSC / MAGMA / METAL / PLINK / SAIGE / REGENIE / MR-MEGA / GWAS-SSF / FUMA / GWAS-VCF / BED...
    • check available formats
  • Optional filtering of variants in commonly used genomic regions: Hapmap3 SNPs / High-LD regions / MHC region

Standardization & Normalization

  • Variant ID standardization
  • CHR and POS notation standardization
  • Variant POS and allele normalization
  • Genome build : Inference and Liftover

Quality control, Value conversion & Filtering

  • Statistics sanity check
  • Extreme value removal
  • Equivalent statistics conversion
    • BETA/SE , OR/OR_95L/OR_95U
    • P, Z, CHISQ, MLOG10P
  • Customizable value filtering

Harmonization

  • rsID assignment based on CHR, POS, and REF/ALT
  • CHR POS assignment based on rsID using a reference text file
  • Palindromic SNPs and indels strand inference using a reference VCF
  • Check allele frequency discrepancy using a reference VCF
  • Reference allele alignment using a reference genome sequence FASTA file

Visualization

  • Mqq plot: Manhattan plot, QQ plot or MQQ plot (with a bunch of customizable features including auto-annotate nearest gene names)
  • Miami plot: mirrored Manhattan plot
  • Brisbane plot: GWAS hits density plot
  • Regional plot: GWAS regional plot
  • Genetic correlation heatmap: ldsc-rg genetic correlation matrix
  • Scatter plot: variant effect size comparison
  • Scatter plot: allele frequency comparison
  • Scatter plot: trumpet plot (plot of MAF and effect size with power lines)

Visualization Examples

image image image image

Other Utilities

  • Read ldsc h2 or rg outputs directly as DataFrames (auto-parsing).
  • Extract lead variants given a sliding window size.
  • Extract novel loci given a list of known lead variants / or known loci obtained from GWAS Catalog.
  • Logging: keep a complete record of manipulations applied to the sumstats.
  • Sumstats summary: give you a quick overview of the sumstats.
  • ...

Requirements

environment.yml

name: gwaslab
channels:
  - conda-forge
  - defaults
dependencies:
  - python=3.8.16=h7a1cb2a_3
  - jupyter==1.0.0
  - pip==23.1.2
  - pip:
      - adjusttext==0.8
      - biopython==1.81
      - gwaslab==3.4.16
      - liftover==1.1.16
      - matplotlib==3.7.1
      - numpy==1.24.2
      - pandas==1.4.4
      - scikit-allel==1.3.5
      - scikit-learn==1.2.2
      - scipy==1.10.1
      - seaborn==0.11.2
      - statsmodels==0.13
      - adjustText==0.8
      - pysam==0.19
      - pyensembl==2.2.3

How to cite

  • GWASLab preprint: He, Y., Koido, M., Shimmori, Y., Kamatani, Y. (2023). GWASLab: a Python package for processing and visualizing GWAS summary statistics. Preprint at Jxiv, 2023-5. https://doi.org/10.51094/jxiv.370

Sample Data

  • Sample GWAS data used in GWASLab is obtained from: http://jenger.riken.jp/ (Suzuki, Ken, et al. "Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population." Nature genetics 51.3 (2019): 379-386.).

Contacts

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gwaslab-3.4.28.tar.gz (20.7 MB view details)

Uploaded Source

Built Distribution

gwaslab-3.4.28-py3-none-any.whl (20.7 MB view details)

Uploaded Python 3

File details

Details for the file gwaslab-3.4.28.tar.gz.

File metadata

  • Download URL: gwaslab-3.4.28.tar.gz
  • Upload date:
  • Size: 20.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.1.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for gwaslab-3.4.28.tar.gz
Algorithm Hash digest
SHA256 0cb8e654cf3c8c4cb628b096195d3c43c2c95df028f55b1818dd3cb5d278cc2b
MD5 bf2025394aac1532ca6770a3598819d8
BLAKE2b-256 ce1ff6b05ad9715f84cb644f57251f1815a678b199390626dec0fb1b6f80de6e

See more details on using hashes here.

File details

Details for the file gwaslab-3.4.28-py3-none-any.whl.

File metadata

  • Download URL: gwaslab-3.4.28-py3-none-any.whl
  • Upload date:
  • Size: 20.7 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.1.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for gwaslab-3.4.28-py3-none-any.whl
Algorithm Hash digest
SHA256 2385f5f98f315ea4ae3d27a279b9413bba1242c184aa46b7c88791651ac31469
MD5 68748131a77a004aa7debeaab6f1a389
BLAKE2b-256 23c24af325105209db1888b1d2ec43bc7a85b4ddb9d215d2804d61ac18c5a801

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page