Skip to main content

A collection of handy tools for GWAS SumStats

Project description

image

GWASLab

badge Downloads badge_pip Hits badge_commit_m

  • A handy Python toolkit for handling GWAS summary statistics (sumstats).
  • Each process is modularized and can be customized to your needs.
  • Sumstats-specific manipulations are designed as methods of a Python object, gwaslab.Sumstats.

Please check GWASLab documentation at https://cloufield.github.io/gwaslab/ Note: GWASLab is being updated very frequently for now. I will release the first stable version soon! Please stay tuned.

Install

pip install gwaslab==3.4.32
import gwaslab as gl
# load plink2 output
mysumstats = gl.Sumstats("t2d_bbj.txt.gz", fmt="plink2")

# load sumstats with auto mode (auto-detecting common headers) 
# assuming ALT/A1 is EA, and frq is EAF
mysumstats = gl.Sumstats("t2d_bbj.txt.gz", fmt="auto")

# or you can specify the columns:
mysumstats = gl.Sumstats("t2d_bbj.txt.gz",
             snpid="SNP",
             chrom="CHR",
             pos="POS",
             ea="ALT",
             nea="REF",
             neaf="Frq",
             beta="BETA",
             se="SE",
             p="P",
             direction="Dir",
             n="N",
             build="19")

# manhattan and qq plot
mysumstats.plot_mqq()
...

Functions

Loading and Formatting

  • Loading sumstats by simply specifying the software name or format name, or specifying each column name.
  • Converting GWAS sumstats to specific formats:
    • LDSC / MAGMA / METAL / PLINK / SAIGE / REGENIE / MR-MEGA / GWAS-SSF / FUMA / GWAS-VCF / BED...
    • check available formats
  • Optional filtering of variants in commonly used genomic regions: Hapmap3 SNPs / High-LD regions / MHC region

Standardization & Normalization

  • Variant ID standardization
  • CHR and POS notation standardization
  • Variant POS and allele normalization
  • Genome build : Inference and Liftover

Quality control, Value conversion & Filtering

  • Statistics sanity check
  • Extreme value removal
  • Equivalent statistics conversion
    • BETA/SE , OR/OR_95L/OR_95U
    • P, Z, CHISQ, MLOG10P
  • Customizable value filtering

Harmonization

  • rsID assignment based on CHR, POS, and REF/ALT
  • CHR POS assignment based on rsID using a reference text file
  • Palindromic SNPs and indels strand inference using a reference VCF
  • Check allele frequency discrepancy using a reference VCF
  • Reference allele alignment using a reference genome sequence FASTA file

Visualization

  • Mqq plot: Manhattan plot, QQ plot or MQQ plot (with a bunch of customizable features including auto-annotate nearest gene names)
  • Miami plot: mirrored Manhattan plot
  • Brisbane plot: GWAS hits density plot
  • Regional plot: GWAS regional plot
  • Genetic correlation heatmap: ldsc-rg genetic correlation matrix
  • Scatter plot: variant effect size comparison
  • Scatter plot: allele frequency comparison
  • Scatter plot: trumpet plot (plot of MAF and effect size with power lines)

Visualization Examples

image image image image

Other Utilities

  • Read ldsc h2 or rg outputs directly as DataFrames (auto-parsing).
  • Extract lead variants given a sliding window size.
  • Extract novel loci given a list of known lead variants / or known loci obtained from GWAS Catalog.
  • Logging: keep a complete record of manipulations applied to the sumstats.
  • Sumstats summary: give you a quick overview of the sumstats.
  • ...

Requirements

environment.yml

name: gwaslab
channels:
  - conda-forge
  - defaults
dependencies:
  - python=3.8.16=h7a1cb2a_3
  - jupyter==1.0.0
  - pip==23.1.2
  - pip:
      - adjusttext==0.8
      - biopython==1.81
      - gwaslab==3.4.16
      - liftover==1.1.16
      - matplotlib==3.7.1
      - numpy==1.24.2
      - pandas==1.4.4
      - scikit-allel==1.3.5
      - scikit-learn==1.2.2
      - scipy==1.10.1
      - seaborn==0.11.2
      - statsmodels==0.13
      - adjustText==0.8
      - pysam==0.19
      - pyensembl==2.2.3

How to cite

  • GWASLab preprint: He, Y., Koido, M., Shimmori, Y., Kamatani, Y. (2023). GWASLab: a Python package for processing and visualizing GWAS summary statistics. Preprint at Jxiv, 2023-5. https://doi.org/10.51094/jxiv.370

Sample Data

  • Sample GWAS data used in GWASLab is obtained from: http://jenger.riken.jp/ (Suzuki, Ken, et al. "Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population." Nature genetics 51.3 (2019): 379-386.).

Contacts

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gwaslab-3.4.34.tar.gz (20.7 MB view details)

Uploaded Source

Built Distribution

gwaslab-3.4.34-py3-none-any.whl (20.7 MB view details)

Uploaded Python 3

File details

Details for the file gwaslab-3.4.34.tar.gz.

File metadata

  • Download URL: gwaslab-3.4.34.tar.gz
  • Upload date:
  • Size: 20.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.1.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for gwaslab-3.4.34.tar.gz
Algorithm Hash digest
SHA256 8fa1e3be07c6724ff5b768aa02acbef3e919e37f1b017c52c18e7474da05c176
MD5 f5c88b0883bde3d7431d5e2add83c48c
BLAKE2b-256 7499f44b27ca1cc683f61dcbd02b8b4d440b7fe264592c8497198ba36ffbdae0

See more details on using hashes here.

File details

Details for the file gwaslab-3.4.34-py3-none-any.whl.

File metadata

  • Download URL: gwaslab-3.4.34-py3-none-any.whl
  • Upload date:
  • Size: 20.7 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.1.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7

File hashes

Hashes for gwaslab-3.4.34-py3-none-any.whl
Algorithm Hash digest
SHA256 e6b5b86677c24c1dca3953967290c92bc901cc771b0d9f76220f35229916341a
MD5 334761eaa5007481783213a2979c4ade
BLAKE2b-256 311f842f5f03b709a9a90b0dd1c446fc177541573fd2e9471d706cdbb5a505db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page