Skip to main content

A collection of handy tools for GWAS SumStats

Project description

GWASLab

image

badge Downloads badge_pip Hits badge_commit_m

  • A handy Python toolkit for handling GWAS summary statistics (sumstats).
  • Each process is modularized and can be customized to your needs.
  • Sumstats-specific manipulations are designed as methods of a Python object, gwaslab.Sumstats.

Please check GWASLab documentation at https://cloufield.github.io/gwaslab/

Note: GWASLab is being updated very frequently for now. I will release the first stable version soon! Please stay tuned.

Warning: Known issues of GWASLab are summarized in https://cloufield.github.io/gwaslab/KnownIssues/ .

Install

install via pip

pip install gwaslab==3.4.46
import gwaslab as gl
# load plink2 output
mysumstats = gl.Sumstats("t2d_bbj.txt.gz", fmt="plink2")

# load sumstats with auto mode (auto-detecting common headers) 
# assuming ALT/A1 is EA, and frq is EAF
mysumstats = gl.Sumstats("t2d_bbj.txt.gz", fmt="auto")

# or you can specify the columns:
mysumstats = gl.Sumstats("t2d_bbj.txt.gz",
             snpid="SNP",
             chrom="CHR",
             pos="POS",
             ea="ALT",
             nea="REF",
             neaf="Frq",
             beta="BETA",
             se="SE",
             p="P",
             direction="Dir",
             n="N",
             build="19")

# manhattan and qq plot
mysumstats.plot_mqq()
...

install in conda environment

Create a Python 3.9 environment and install gwaslab using pip:

conda env create -n gwaslab_test -c conda-forge python=3.9
conda activate gwaslab
pip install gwaslab==3.4.45

or create a new environment using yml file environment_3.4.40.yml

conda env create -n gwaslab -f environment_3.4.40.yml

install using docker

A docker file is available here for building local images.

Functions

Loading and Formatting

  • Loading sumstats by simply specifying the software name or format name, or specifying each column name.
  • Converting GWAS sumstats to specific formats:
    • LDSC / MAGMA / METAL / PLINK / SAIGE / REGENIE / MR-MEGA / GWAS-SSF / FUMA / GWAS-VCF / BED...
    • check available formats
  • Optional filtering of variants in commonly used genomic regions: Hapmap3 SNPs / High-LD regions / MHC region

Standardization & Normalization

  • Variant ID standardization
  • CHR and POS notation standardization
  • Variant POS and allele normalization
  • Genome build : Inference and Liftover

Quality control, Value conversion & Filtering

  • Statistics sanity check
  • Extreme value removal
  • Equivalent statistics conversion
    • BETA/SE , OR/OR_95L/OR_95U
    • P, Z, CHISQ, MLOG10P
  • Customizable value filtering

Harmonization

  • rsID assignment based on CHR, POS, and REF/ALT
  • CHR POS assignment based on rsID using a reference text file
  • Palindromic SNPs and indels strand inference using a reference VCF
  • Check allele frequency discrepancy using a reference VCF
  • Reference allele alignment using a reference genome sequence FASTA file

Visualization

  • Mqq plot: Manhattan plot, QQ plot or MQQ plot (with a bunch of customizable features including auto-annotate nearest gene names)
  • Miami plot: mirrored Manhattan plot
  • Brisbane plot: GWAS hits density plot
  • Regional plot: GWAS regional plot
  • Genetic correlation heatmap: ldsc-rg genetic correlation matrix
  • Scatter plot: variant effect size comparison
  • Scatter plot: allele frequency comparison
  • Scatter plot: trumpet plot (plot of MAF and effect size with power lines)

Visualization Examples

image image image image

Other Utilities

  • Read ldsc h2 or rg outputs directly as DataFrames (auto-parsing).
  • Extract lead variants given a sliding window size.
  • Extract novel loci given a list of known lead variants / or known loci obtained from GWAS Catalog.
  • Logging: keep a complete record of manipulations applied to the sumstats.
  • Sumstats summary: give you a quick overview of the sumstats.
  • ...

Requirements (deprecated)

environment.yml

name: gwaslab
channels:
  - conda-forge
  - defaults
dependencies:
  - python=3.8.16=h7a1cb2a_3
  - jupyter==1.0.0
  - pip==23.1.2
  - pip:
      - adjusttext==0.8
      - biopython==1.81
      - gwaslab==3.4.16
      - liftover==1.1.16
      - matplotlib==3.7.1
      - numpy==1.24.2
      - pandas==1.4.4
      - scikit-allel==1.3.5
      - scikit-learn==1.2.2
      - scipy==1.10.1
      - seaborn==0.11.2
      - statsmodels==0.13
      - adjustText==0.8
      - pysam==0.19
      - pyensembl==2.2.3
      - h5py==3.10.0

How to cite

  • GWASLab preprint: He, Y., Koido, M., Shimmori, Y., Kamatani, Y. (2023). GWASLab: a Python package for processing and visualizing GWAS summary statistics. Preprint at Jxiv, 2023-5. https://doi.org/10.51094/jxiv.370

Sample Data

  • Sample GWAS data used in GWASLab is obtained from: http://jenger.riken.jp/ (Suzuki, Ken, et al. "Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population." Nature genetics 51.3 (2019): 379-386.).

Acknowledgement

Thanks to @sup3rgiu, @soumickmj and @gmauro for their contributions to the source codes.

Contacts

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gwaslab-3.5.0.tar.gz (20.8 MB view details)

Uploaded Source

Built Distribution

gwaslab-3.5.0-py3-none-any.whl (20.8 MB view details)

Uploaded Python 3

File details

Details for the file gwaslab-3.5.0.tar.gz.

File metadata

  • Download URL: gwaslab-3.5.0.tar.gz
  • Upload date:
  • Size: 20.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for gwaslab-3.5.0.tar.gz
Algorithm Hash digest
SHA256 756515a29010b3eb3e49c9b6f2cb59c039c490d5847524ab025403954a3579c1
MD5 e3161dea20bb2487db0b2d43c4b386e8
BLAKE2b-256 720518cf7ac98f69a3cf79fc92d58cf7bde1852e0c53c2c4bb5608cca435ec07

See more details on using hashes here.

File details

Details for the file gwaslab-3.5.0-py3-none-any.whl.

File metadata

  • Download URL: gwaslab-3.5.0-py3-none-any.whl
  • Upload date:
  • Size: 20.8 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for gwaslab-3.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 deb0e8ce866bcb1bfa7396b2fc53561a32b0d90fcc74dc1cb3e9e3af524603ac
MD5 404c9ec021ffae2cece79fc4fa639df3
BLAKE2b-256 53c63e0f4c1f8120ed281d04777eee6b9c685390f94f225b39d5b367ce1e7078

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page