Skip to main content

A Fisher-Based Software for Parameter Estimation from Gravitational Waves

Project description

GWDALI Software

Software developed to perform parameter estimations of gravitational waves from compact objects coalescence (CBC) via Gaussian and Beyond-Gaussian approximation of GW likelihood. The Gaussian approximation is related to Fisher Matrix, from which it is direct to compute the covariance matrix by inverting the Fisher Matrix [1]. GWDALI also deals with the not-so-infrequent cases of Fisher Matrix with zero-determinant. The Beyond-Gaussian approach uses the Derivative Approximation for LIkelihoods (DALI) algorithm proposed in [2] and applied to gravitational waves in [3], whose model parameter uncertainties are estimated via Monte Carlo sampling but less costly than using the GW likelihood with no approximation.

Installation

To install the software run the command below:

$ pip install gwdali

Usage [example]

import numpy as np
#-------------------
import GWDALI as gw
#-------------------
from tqdm import trange
from astropy.cosmology import FlatLambdaCDM
cosmo = FlatLambdaCDM(70,0.3)

rad = np.pi/180 ; deg = 1./rad
#--------------------------------------------
# Detector, position and orientation
#--------------------------------------------
FreeParams = ['DL','iota','psi','phi_coal']

# Cosmic Explorer:
det0 = {"name":"CE","lon":-119,"lat":46,"rot":45,"shape":90}
# Einstein Telescope:
det1 = {"name":"ET","lon":10,"lat":43,"rot":0,"shape":60}
det2 = {"name":"ET","lon":10,"lat":43,"rot":120,"shape":60}
det3 = {"name":"ET","lon":10,"lat":43,"rot":-120,"shape":60}

#------------------------------------------------------
# Setting Injections (Single detection)
#------------------------------------------------------
z = 0.1 # Redshift

params = {}
params['m1']  = 1.3*(1+z) # mass of the first object [solar mass]
params['m2']  = 1.5*(1+z) # mass of the second object [solar mass]
params['z']   = z
params['RA']       = np.random.uniform(-180,180)
params['Dec']      = (np.pi/2-np.arccos(np.random.uniform(-1,1)))*deg
params['DL']       = cosmo.luminosity_distance(z).value/1.e3 # Gpc
params['iota']     = np.random.uniform(0,np.pi)          # Inclination angle (rad)
params['psi']      = np.random.uniform(-np.pi,np.pi) # Polarization angle (rad)
params['t_coal']   = 0  # Coalescence time
params['phi_coal'] = 0  # Coalescence phase
# Spins:
params['sx1'] = 0
params['sy1'] = 0
params['sz1'] = 0
params['sx2'] = 0
params['sy2'] = 0
params['sz2'] = 0

#----------------------------------------------------------------------
# "approximant" options:
#               [Leading_Order, TaylorF2, TaylorF2_lal, IMRPhenomP, IMRPhenomD]
#----------------------------------------------------------------------
# "dali_method" options:
#               [Fisher, Fisher_Sampling, Doublet, Triplet, Standard]
#----------------------------------------------------------------------
res = gw.GWDALI( Detection_Dict = params,
                 FreeParams     = FreeParams,
                 detectors      = [det0,det1,det2,det3], # Einstein Telescope + Cosmic Explorer
                 approximant    = 'TaylorF2',
                 dali_method    = 'Doublet',
                 sampler_method = 'nestle', # Same as Bilby sampling method
                 save_fisher    = False,
                 save_cov       = False,
                 plot_corner    = False,
                 save_samples   = False,
                 hide_info      = True,
                 index          = 1,
                 rcond          = 1.e-4,
                 npoints=300) # points for "nested sampling" or steps/walkers for "MCMC"

Samples = res['Samples']
Fisher  = res['Fisher']
CovFish = res['CovFisher']
Cov     = res['Covariance']
Rec     = res['Recovery']
Err     = res['Error']
SNR     = res['SNR']

References

[1] L. S. Finn and D. F. Chernoff, “Observing binary inspiral in gravitational radiation: One interferometer,” Phys. Rev. D, vol. 47, pp. 2198–2219, 1993.

[2] E. Sellentin, M. Quartin, and L. Amendola, “Breaking the spell of gaussianity: forecasting with higher order fisher matrices,” Monthly Notices of the Royal Astronomical Society, vol. 441, no. 2, pp. 1831–1840, 2014.

[3] Z. Wang, C. Liu, J. Zhao, and L. Shao, “Extending the fisher information matrix in gravitational-wave data analysis,” arXiv preprint arXiv:2203.02670, 2022.

Authors

  • Josiel Mendonça Soares de Souza (developer)
  • Riccardo Sturani (collaborator)

License

MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gwdali-0.0.5.tar.gz (152.8 kB view details)

Uploaded Source

Built Distribution

gwdali-0.0.5-py3-none-any.whl (154.5 kB view details)

Uploaded Python 3

File details

Details for the file gwdali-0.0.5.tar.gz.

File metadata

  • Download URL: gwdali-0.0.5.tar.gz
  • Upload date:
  • Size: 152.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for gwdali-0.0.5.tar.gz
Algorithm Hash digest
SHA256 6fb7912aa63c85659078a0caa758091aa01d3cc4b7043ae79a1b878962d875a7
MD5 1795036cb8f71e8e051780872590b167
BLAKE2b-256 d853d5b6c03384530de2895b11ae4bbb3f6afe4e4f46445a78f8c3de101be3df

See more details on using hashes here.

File details

Details for the file gwdali-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: gwdali-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 154.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for gwdali-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 c25f525afb9eeb9cddff468b1bbd0eb9163e46a518524e25ec2f1ad76a719e56
MD5 c400bc5993cefff69ed420f2a337b25c
BLAKE2b-256 884145a29462afb495ec2483f6ce8235db15c4025c3f5bde5e018616aa4aa594

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page