Skip to main content

A Fisher-Based Software for Parameter Estimation from Gravitational Waves

Project description

GWDALI Software

Software developed to perform parameter estimations of gravitational waves from compact objects coalescence (CBC) via Gaussian and Beyond-Gaussian approximation of GW likelihood. The Gaussian approximation is related to Fisher Matrix, from which it is direct to compute the covariance matrix by inverting the Fisher Matrix [1]. GWDALI also deals with the not-so-infrequent cases of Fisher Matrix with zero-determinant. The Beyond-Gaussian approach uses the Derivative Approximation for LIkelihoods (DALI) algorithm proposed in [2] and applied to gravitational waves in [3], whose model parameter uncertainties are estimated via Monte Carlo sampling but less costly than using the GW likelihood with no approximation.

Installation

To install the software run the command below:

$ pip install gwdali

Documentation

Available in https://gwdali.readthedocs.io/en/latest/

Usage [example]

import numpy as np
#-------------------
import GWDALI as gw
#-------------------
from tqdm import trange
from astropy.cosmology import FlatLambdaCDM
cosmo = FlatLambdaCDM(70,0.3)

rad = np.pi/180 ; deg = 1./rad
#--------------------------------------------
# Detector, position and orientation
#--------------------------------------------
FreeParams = ['DL','iota','psi','phi_coal']

# Cosmic Explorer:
det0 = {"name":"CE","lon":-119,"lat":46,"rot":45,"shape":90}
# Einstein Telescope:
det1 = {"name":"ET","lon":10,"lat":43,"rot":0,"shape":60}
det2 = {"name":"ET","lon":10,"lat":43,"rot":120,"shape":60}
det3 = {"name":"ET","lon":10,"lat":43,"rot":-120,"shape":60}

#------------------------------------------------------
# Setting Injections (Single detection)
#------------------------------------------------------
z = 0.1 # Redshift

params = {}
params['m1']  = 1.3*(1+z) # mass of the first object [solar mass]
params['m2']  = 1.5*(1+z) # mass of the second object [solar mass]
params['z']   = z
params['RA']       = np.random.uniform(-180,180)
params['Dec']      = (np.pi/2-np.arccos(np.random.uniform(-1,1)))*deg
params['DL']       = cosmo.luminosity_distance(z).value/1.e3 # Gpc
params['iota']     = np.random.uniform(0,np.pi)          # Inclination angle (rad)
params['psi']      = np.random.uniform(-np.pi,np.pi) # Polarization angle (rad)
params['t_coal']   = 0  # Coalescence time
params['phi_coal'] = 0  # Coalescence phase
# Spins:
params['sx1'] = 0
params['sy1'] = 0
params['sz1'] = 0
params['sx2'] = 0
params['sy2'] = 0
params['sz2'] = 0

#----------------------------------------------------------------------
# "approximant" options:
#               [Leading_Order, TaylorF2_py, ...] or any lal approximant
#----------------------------------------------------------------------
# "dali_method" options:
#               [Fisher, Fisher_Sampling, Doublet, Triplet, Standard]
#----------------------------------------------------------------------
res = gw.GWDALI( Detection_Dict = params,
                 FreeParams     = FreeParams,
                 detectors      = [det0,det1,det2,det3], # Einstein Telescope + Cosmic Explorer
                 approximant    = 'TaylorF2_py',
                 dali_method    = 'Doublet',
                 sampler_method = 'nestle', # Same as Bilby sampling method
                 save_fisher    = False,
                 save_cov       = False,
                 plot_corner    = False,
                 save_samples   = False,
                 hide_info      = True,
                 index          = 1,
                 rcond          = 1.e-4,
                 npoints=300) # points for "nested sampling" or steps/walkers for "MCMC"

Samples = res['Samples']
Fisher  = res['Fisher']
CovFish = res['CovFisher']
Cov     = res['Covariance']
Rec     = res['Recovery']
Err     = res['Error']
SNR     = res['SNR']

References

[1] L. S. Finn and D. F. Chernoff, “Observing binary inspiral in gravitational radiation: One interferometer,” Phys. Rev. D, vol. 47, pp. 2198–2219, 1993.

[2] E. Sellentin, M. Quartin, and L. Amendola, “Breaking the spell of gaussianity: forecasting with higher order fisher matrices,” Monthly Notices of the Royal Astronomical Society, vol. 441, no. 2, pp. 1831–1840, 2014.

[3] Z. Wang, C. Liu, J. Zhao, and L. Shao, “Extending the fisher information matrix in gravitational-wave data analysis,” arXiv preprint arXiv:2203.02670, 2022.

Authors

  • Josiel Mendonça Soares de Souza (developer)
  • Riccardo Sturani (collaborator)

License

MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gwdali-0.0.7.tar.gz (151.9 kB view details)

Uploaded Source

Built Distribution

gwdali-0.0.7-py3-none-any.whl (153.4 kB view details)

Uploaded Python 3

File details

Details for the file gwdali-0.0.7.tar.gz.

File metadata

  • Download URL: gwdali-0.0.7.tar.gz
  • Upload date:
  • Size: 151.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for gwdali-0.0.7.tar.gz
Algorithm Hash digest
SHA256 5456d545908688ff4791fe8ada78bc40d1876c99d89bd0d6bfec33c4e726644b
MD5 4af3941af0ba6b34d40c55418bb33a16
BLAKE2b-256 6bdf05a8feee7d3073baa81a9fd05adff13cd634e6ec9b221292adb47949a782

See more details on using hashes here.

File details

Details for the file gwdali-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: gwdali-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 153.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for gwdali-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 783004026d2258f0dc1e708442ebe95e8a9d1c2feaeaeb1d238f489b1e2fc387
MD5 813352ed70d520bc24bf5b04b5a6e227
BLAKE2b-256 f6b4a0a1b3f9deec643facd04cf48e07efc30daa6dc566f503d8579d1bd45c78

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page