Skip to main content

A Fisher-Based Software for Parameter Estimation from Gravitational Waves

Project description

GWDALI Software

Software developed to perform parameter estimations of gravitational waves from compact objects coalescence (CBC) via Gaussian and Beyond-Gaussian approximation of GW likelihood. The Gaussian approximation is related to Fisher Matrix, from which it is direct to compute the covariance matrix by inverting the Fisher Matrix [1]. GWDALI also deals with the not-so-infrequent cases of Fisher Matrix with zero-determinant. The Beyond-Gaussian approach uses the Derivative Approximation for LIkelihoods (DALI) algorithm proposed in [2] and applied to gravitational waves in [3], whose model parameter uncertainties are estimated via Monte Carlo sampling but less costly than using the GW likelihood with no approximation.

Installation

To install the software run the command below:

$ pip install gwdali

Documentation

Available in https://gwdali.readthedocs.io/en/latest/

Usage [example]

import numpy as np
#-------------------
import GWDALI as gw
#-------------------
from tqdm import trange
from astropy.cosmology import FlatLambdaCDM
cosmo = FlatLambdaCDM(70,0.3)

rad = np.pi/180 ; deg = 1./rad
#--------------------------------------------
# Detector, position and orientation
#--------------------------------------------
FreeParams = ['DL','iota','psi','phi_coal']

# Cosmic Explorer:
det0 = {"name":"CE","lon":-119,"lat":46,"rot":45,"shape":90}
# Einstein Telescope:
det1 = {"name":"ET","lon":10,"lat":43,"rot":0,"shape":60}
det2 = {"name":"ET","lon":10,"lat":43,"rot":120,"shape":60}
det3 = {"name":"ET","lon":10,"lat":43,"rot":-120,"shape":60}

#------------------------------------------------------
# Setting Injections (Single detection)
#------------------------------------------------------
z = 0.1 # Redshift

params = {}
params['m1']  = 1.3*(1+z) # mass of the first object [solar mass]
params['m2']  = 1.5*(1+z) # mass of the second object [solar mass]
params['z']   = z
params['RA']       = np.random.uniform(-180,180)
params['Dec']      = (np.pi/2-np.arccos(np.random.uniform(-1,1)))*deg
params['DL']       = cosmo.luminosity_distance(z).value/1.e3 # Gpc
params['iota']     = np.random.uniform(0,np.pi)          # Inclination angle (rad)
params['psi']      = np.random.uniform(-np.pi,np.pi) # Polarization angle (rad)
params['t_coal']   = 0  # Coalescence time
params['phi_coal'] = 0  # Coalescence phase
# Spins:
params['sx1'] = 0
params['sy1'] = 0
params['sz1'] = 0
params['sx2'] = 0
params['sy2'] = 0
params['sz2'] = 0

#----------------------------------------------------------------------
# "approximant" options:
#               [Leading_Order, TaylorF2_py, ...] or any lal approximant
#----------------------------------------------------------------------
# "dali_method" options:
#               [Fisher, Fisher_Sampling, Doublet, Triplet, Standard]
#----------------------------------------------------------------------
res = gw.GWDALI( Detection_Dict = params,
                 FreeParams     = FreeParams,
                 detectors      = [det0,det1,det2,det3], # Einstein Telescope + Cosmic Explorer
                 approximant    = 'TaylorF2_py',
                 dali_method    = 'Doublet',
                 sampler_method = 'nestle', # Same as Bilby sampling method
                 save_fisher    = False,
                 save_cov       = False,
                 plot_corner    = False,
                 save_samples   = False,
                 hide_info      = True,
                 index          = 1,
                 rcond          = 1.e-4,
                 npoints=300) # points for "nested sampling" or steps/walkers for "MCMC"

Samples = res['Samples']
Fisher  = res['Fisher']
CovFish = res['CovFisher']
Cov     = res['Covariance']
Rec     = res['Recovery']
Err     = res['Error']
SNR     = res['SNR']

References

[1] L. S. Finn and D. F. Chernoff, “Observing binary inspiral in gravitational radiation: One interferometer,” Phys. Rev. D, vol. 47, pp. 2198–2219, 1993.

[2] E. Sellentin, M. Quartin, and L. Amendola, “Breaking the spell of gaussianity: forecasting with higher order fisher matrices,” Monthly Notices of the Royal Astronomical Society, vol. 441, no. 2, pp. 1831–1840, 2014.

[3] Z. Wang, C. Liu, J. Zhao, and L. Shao, “Extending the fisher information matrix in gravitational-wave data analysis,” arXiv preprint arXiv:2203.02670, 2022.

Authors

  • Josiel Mendonça Soares de Souza (developer)
  • Riccardo Sturani (collaborator)

License

MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gwdali-0.0.8.tar.gz (151.6 kB view details)

Uploaded Source

Built Distribution

gwdali-0.0.8-py3-none-any.whl (153.1 kB view details)

Uploaded Python 3

File details

Details for the file gwdali-0.0.8.tar.gz.

File metadata

  • Download URL: gwdali-0.0.8.tar.gz
  • Upload date:
  • Size: 151.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for gwdali-0.0.8.tar.gz
Algorithm Hash digest
SHA256 bc3dcc205769debddab9d1237569807d68e8ce2b9d84d35f9effdb7107e334a2
MD5 fb43020e6160da9937beecf51a698a1c
BLAKE2b-256 d717f0eb4e1bf79d3d561d65ad3746fa8ef24f3ca8872e86e806b1fac958d66c

See more details on using hashes here.

File details

Details for the file gwdali-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: gwdali-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 153.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for gwdali-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 fc9c9c4150204a1451c5c0a5575217532cb65e0afb55ca135dbf3d9b7bff84ac
MD5 9d8fc227b98e7608278db10363282f31
BLAKE2b-256 238d40d6442250bd6ca89699fa700f14b7549350be08cf44d4378ff7c1ddb8f3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page