Skip to main content

A Fisher-Based Software for Parameter Estimation from Gravitational Waves

Project description

GWDALI Software

Software developed to perform parameter estimations of gravitational waves from compact objects coalescence (CBC) via Gaussian and Beyond-Gaussian approximation of GW likelihood. The Gaussian approximation is related to Fisher Matrix, from which it is direct to compute the covariance matrix by inverting the Fisher Matrix [1]. GWDALI also deals with the not-so-infrequent cases of Fisher Matrix with zero-determinant. The Beyond-Gaussian approach uses the Derivative Approximation for LIkelihoods (DALI) algorithm proposed in [2] and applied to gravitational waves in [3], whose model parameter uncertainties are estimated via Monte Carlo sampling but less costly than using the GW likelihood with no approximation.

Installation

To install the software run the command below:

$ pip install gwdali

Documentation

Available in https://gwdali.readthedocs.io/en/latest/

Usage [example]

import numpy as np
#-------------------
import GWDALI as gw
#-------------------
from tqdm import trange
from astropy.cosmology import FlatLambdaCDM
cosmo = FlatLambdaCDM(70,0.3)

rad = np.pi/180 ; deg = 1./rad
#--------------------------------------------
# Detector, position and orientation
#--------------------------------------------
FreeParams = ['DL','iota','psi','phi_coal']

# Cosmic Explorer:
det0 = {"name":"CE","lon":-119,"lat":46,"rot":45,"shape":90}
# Einstein Telescope:
det1 = {"name":"ET","lon":10,"lat":43,"rot":0,"shape":60}
det2 = {"name":"ET","lon":10,"lat":43,"rot":120,"shape":60}
det3 = {"name":"ET","lon":10,"lat":43,"rot":-120,"shape":60}

#------------------------------------------------------
# Setting Injections (Single detection)
#------------------------------------------------------
z = 0.1 # Redshift

params = {}
params['m1']  = 1.3*(1+z) # mass of the first object [solar mass]
params['m2']  = 1.5*(1+z) # mass of the second object [solar mass]
params['z']   = z
params['RA']       = np.random.uniform(-180,180)
params['Dec']      = (np.pi/2-np.arccos(np.random.uniform(-1,1)))*deg
params['DL']       = cosmo.luminosity_distance(z).value/1.e3 # Gpc
params['iota']     = np.random.uniform(0,np.pi)          # Inclination angle (rad)
params['psi']      = np.random.uniform(-np.pi,np.pi) # Polarization angle (rad)
params['t_coal']   = 0  # Coalescence time
params['phi_coal'] = 0  # Coalescence phase
# Spins:
params['sx1'] = 0
params['sy1'] = 0
params['sz1'] = 0
params['sx2'] = 0
params['sy2'] = 0
params['sz2'] = 0

#----------------------------------------------------------------------
# "approximant" options:
#               [Leading_Order, TaylorF2_py, ...] or any lal approximant
#----------------------------------------------------------------------
# "dali_method" options:
#               [Fisher, Fisher_Sampling, Doublet, Triplet, Standard]
#----------------------------------------------------------------------
res = gw.GWDALI( Detection_Dict = params,
                 FreeParams     = FreeParams,
                 detectors      = [det0,det1,det2,det3], # Einstein Telescope + Cosmic Explorer
                 approximant    = 'TaylorF2_py',
                 dali_method    = 'Doublet',
                 sampler_method = 'nestle', # Same as Bilby sampling method
                 save_fisher    = False,
                 save_cov       = False,
                 plot_corner    = False,
                 save_samples   = False,
                 hide_info      = True,
                 index          = 1,
                 rcond          = 1.e-4,
                 npoints=300) # points for "nested sampling" or steps/walkers for "MCMC"

Samples = res['Samples']
Fisher  = res['Fisher']
CovFish = res['CovFisher']
Cov     = res['Covariance']
Rec     = res['Recovery']
Err     = res['Error']
SNR     = res['SNR']

References

[1] L. S. Finn and D. F. Chernoff, “Observing binary inspiral in gravitational radiation: One interferometer,” Phys. Rev. D, vol. 47, pp. 2198–2219, 1993.

[2] E. Sellentin, M. Quartin, and L. Amendola, “Breaking the spell of gaussianity: forecasting with higher order fisher matrices,” Monthly Notices of the Royal Astronomical Society, vol. 441, no. 2, pp. 1831–1840, 2014.

[3] Z. Wang, C. Liu, J. Zhao, and L. Shao, “Extending the fisher information matrix in gravitational-wave data analysis,” arXiv preprint arXiv:2203.02670, 2022.

Authors

  • Josiel Mendonça Soares de Souza (developer)
  • Riccardo Sturani (collaborator)

License

MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

GWDALI-0.1.0.tar.gz (151.5 kB view details)

Uploaded Source

Built Distribution

GWDALI-0.1.0-py3-none-any.whl (153.2 kB view details)

Uploaded Python 3

File details

Details for the file GWDALI-0.1.0.tar.gz.

File metadata

  • Download URL: GWDALI-0.1.0.tar.gz
  • Upload date:
  • Size: 151.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for GWDALI-0.1.0.tar.gz
Algorithm Hash digest
SHA256 1c1f5df1c4cae2a19e1bd184075ba76ec257a66a1ee8c8e4ef43ed0cb49df929
MD5 7e2ceb770c92755f8027bb15ee725031
BLAKE2b-256 e616010937487c387af87d7713e266fb13f8914a9e732d5e9982e491590cb038

See more details on using hashes here.

File details

Details for the file GWDALI-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: GWDALI-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 153.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for GWDALI-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e6641b49c376ab3618c5cd29386021195eca16f82d589e6e16bb8cc4e1f76119
MD5 ba3064cb02a5597933df68bdec6d8a29
BLAKE2b-256 a695990dd0bcb7e9f2b0c3af7a54231c0aac882ecb1b7df2c966a19656dd3608

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page